This question paper contains 4 printed pages]

Roll No.

D

S. No. of Question Paper : 6218

Unique Paper Code : 222504

Name of the Paper : Electronic Devices (PHHT-518)

: V

Name of the Course : **B.Sc. (Hons.) Physics** 

Semester

Duration : 3 Hours

Maximum Marks: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt *five* questions in all. *All* questions carry equal marks.

Question No. 1 is compulsory. Use of Scientific Calculator is allowed.

All symbols have their usual meaning.

| ( <i>h</i> | = 6.63 × 10 <sup>-34</sup> Js, $k_{\rm B}$ = 1.38 × 10 <sup>-23</sup> J/K, $q$ = 1.6 × 10 <sup>-19</sup> C, $c$ = 3 × 10 | ) <sup>8</sup> m/s.) |
|------------|--------------------------------------------------------------------------------------------------------------------------|----------------------|
| 1.         | Answer the following questions (any five) :                                                                              | 5×3=15               |

(a) Calculate  $I_C$  and  $I_E$  for a transistor that has  $\alpha = 0.98$  and  $I_B = 100 \ \mu A$ .

- (b) The wavelength of light emitted by a certain LED is 60 nm. Find the energy gap in eV.
- (c) Determine peak point emitter voltage for a UJT transistor if  $V_{BB} = 20$  V and  $\eta = 0.6$ .

P.T.O.

- (*d*) What is the position of the Fermi level in an intrinsic semiconductor ? How does its position change when :
  - (*i*) donors and
  - (*ii*) acceptors

are added to the semiconductor ?

- (e) Show that negative feedback helps in reduction of noise in amplifiers.
- (f) Give a short note on photodiode.
- (g) Differentiate between amplifier and oscillator. State Barkhausen Criterion for self-sustained oscillations.
- 2. (a) Explain the concept of potential energy barrier.
  - (b) Derive the Volt-Ampere (V-I) equation for a p-n junction diode.
  - (c) For an abrupt Ge *p-n* junction doped with donor and acceptor concentrations of  $N_d = 10^{23} \text{ m}^{-3}$  and  $N_a = 10^{22} \text{ m}^{-3}$ , calculate the potential barrier if intrinsic carrier density  $n_i = 10^{13} \text{ cm}^{-3}$ . Assume KT/q = 0.026 V. 2,10,3

(a) Draw circuit diagram of a Full Wave rectifier. Calculate I<sub>dc</sub>, I<sub>rms</sub>, ripple factor, efficiency of rectification.

- (b) With the help of energy band diagram, explain current *Vs*. voltage characteristics of a Tunnel diode in forward and reverse biasing conditions.8,7
- 4. (*a*) Why the voltage divider bias circuit is preferred to Fixed bias circuit for a BJT ? Calculate stability factors S of voltage divider bias circuit.

*(b)* Determine the dc bias voltage and the current  $I_c$  for the voltage-divider configuration if V = 22 V,  $R_1 = 39 \text{ k}\Omega$ ,  $R_2 = 3.9 \text{ k}\Omega$ ,  $R_c = 10 \text{ k}\Omega$ ,  $R_E = 1.5 \text{ k}\Omega$ ,  $C_{in} = C_{out} = 10 \ \mu F, \ C_E = 50 \ \mu F \ and \ \beta = 140.$ 8,7



- Draw the circuit diagram of RC coupled amplifier. Give its ac equivalent circuit in different 5. (a)frequency ranges. Derive its voltage gain in low frequency region.
  - Calculate hybrid parameters of a CE single stage transistor amplifier : (b)
    - with a.c. output shorted having  $I_b = 20 \ \mu A$ ,  $I_c = 1 \ mA$ ,  $V_{be} = 22 \ mV$  and *(i)*  $V_{ce} = 0 V$
    - with a.c. input open circuited having  $I_b = 0 \ \mu A$ ,  $I_c = 30 \ \mu A$ ,  $V_{be} = 0.25 \ mV$ (ii)and  $V_{ce} = 1$  V. 8,7

P.T.O.

6. (*a*) Explain the working of a transistor astable multivibrator. Obtain an expression for time period and draw the output waveform for both the transistors.

4)

(

- (b) Explain the working of a JFET. Draw and discuss the transfer and drain characteristics of an *n*-channel JFET. Also give its equivalent circuit.
  7,8
- (a) What is amplitude modulation ? Show that the amplitude modulated wave consists of carrier and two side bands.
  - (b) Determine the nodal voltages for the given network if  $I_1 = 4 \text{ A}$ ,  $I_2 = 2 \text{ A}$ ,  $R_1 = 2 \Omega$ ,  $R_2 = 6 \Omega$ ,  $R_3 = 12 \Omega$ .



(c) Convert the following  $\pi$  to T network.



4

6218

8,5,2

1,800