[This question paper contains 2 printed pages.]

Sr. No. of Question Paper: 1380

F-7

Your Roll No.....

Unique Paper Code

: 2221501

Name of the Paper

: Quantum Mechanics and its Applications I

Name of the Course

: B.Sc. (H) Physics (Erstwhile FYUP)

Semester

: V

Duration: 3 Hours

Maximum Marks: 75

Instructions for Candidates

1. Write your Roll No. on the top immediately on the receipt of this question paper.

2. Attempt five questions in all.

3. Question No. 1 is compulsory.

1. Attempt any five questions of the following:

 $(3 \times 5 = 15)$

(a) Prove the following commutation relations.

$$[x, p_z] = 0$$

$$[x,y]=0$$

$$[z, p_z] = i\hbar$$

(b) Prove Heisenberg's uncertainty relation using the concept of wave packet.

(c) On the basis of energy bands differentiate among insulator, semi-conductor and conductor.

(d) Discuss the significance of the quantum numbers 1, m_1 and m_s .

(e) Draw the wave function and corresponding probability density for the first three states of a simple harmonic oscillator.

(f) Prove $\sigma_x \sigma_y = 2i \sigma_z$, where the symbols have their usual memory.

(g) The wave function for hydrogen atom in 1s state is

$$R_{1s}(r) = \frac{1}{\sqrt{\pi}} \left(\frac{1}{a_0}\right)^{3/2} e^{-r/a_0}$$

where $a_0 = Bohr radius$.

Calculate the expectation value of position of the electron in this state.

- (h) Why is an inhomogeneous magnetic field required for Stern-Gerlach Experiment?
- 2. (a) Derive time dependent Schrodinger equation. Using this equation obtain time independent Schrodinger equation. (10)
 - (b) Express the most general solution of the time dependent Schrodinger equation in terms of linear combination of stationary states. (5)
- 3. (a) Solve the Schrodinger equation for an electron moving in a one dimensional periodic potential and discuss how does it lead to the energy band formation in a solid. (10)
 - (b) Discuss the concept of effective mass of an electron in a metal. Give its physical significance. (5)
- 4. Solve the Schrodinger equation for a particle having energy $E < V_0$ for a square well potential of finite depth V_0 . Discuss the graphical representation of the transcendental equations. (15)
- 5. (a) Using Schrodinger equation derive an expression of eigen energy for a particle moving in a simple harmonic potential. (10)
 - (b) What is zero point energy of a simple harmonic oscillator? Give its physical significance. (5)
- 6. Starting from Schrodinger equation for hydrogen atom in spherical polar coordinates, split the equation into three parts. Obtain the solution for radial wave equation. (15)
- 7. (a) Describe and discuss the significance of Stern-Gerlach experiment. How does it lead to the space quantization due to spin? (10)
 - (b) A beam of silver atoms with a velocity of 10⁶ cm/s passes through a magnetic field of gradient 100 W/m /cm for a distance of 5 cm. What is the separation between the two components of the beam as it comes out of the magnetic field?