This question paper contains 3 printed pages] Roll No.			
S. No. of Question Paper	: 1381		
Unique Paper Code	2221502	F-7	
Name of the Paper	: Electromagnetic Theor	У	
Name of the Course	Name of the Course : B.Sc. (Hons.) Physics (Erstwhile FYUP)		
Semester	: v		
Duration: 3 Hours		Maximum Marks: 75	
(Write your Roll No. on the top immediately on receipt of this question paper.)			
Attempt five questions in all.			
All questions carry equal marks.			
Question No. 1 is compulsory.			
1. Attempt any five of the following:		5×3=15	
(a) Discuss and compare Lorentz and Coulomb gauges.			
(b) If the earth receives 1400 Joules m^{-2} sec ⁻¹ solar energy, what are the amplitudes of			
the electric	the electric and magnetic fields of radiation.		
(c) Calculate th	Calculate the skin depth for radio waves of wavelength 4000 m for penetrating into sea		
water of co	water of conductivity $\sigma = 4$ mho/m.		
(d) Discuss the	Discuss the significance of plasma frequency in the transmission of radio waves through		
ionosphere.		P.T.O.	

· ·

- (e) An electromagnetic wave polarized parallel to plane of incidence is incident from air on to distilled water with $\mu_r = 1$ and $\epsilon_r = 81$, find the brewsters angle.
- (f) Show that good conductors are good reflectors.
- (g) Show that E.B is relativestically invariant.
- 2. (a) Discuss how Maxwell's modified Ampere's law to make it consistent with the equation of continuity. Explain the significance of displacement current.
 - (b) The conduction current density in a dielectric is given by $J = 0.02 \sin{(10^9 t)} \text{ Amp/m}^2$. Find the displacement current density, if $\sigma = 10^3 \text{ mho/m}$ and $\varepsilon_r = 6.5$.
- 3. (a) Derive Fresnel's relation for reflection and transmission of electromagnetic waves having electric field component normal to the plane of incidence at the boundary of two dielectrics.
 - (b) Derive the boundary conditions satisfied by the electric and magnetic field vectors at the boundary of two dielectrics.
- 4. (a) Starting with the Maxwell's equations obtain the wave equation for the propagation of electromagnetic wave in a symmetric planar wave guide. Derive the appropriate eigen value equations.
 - (b) Show that there exists only one symmetric TE mode for $0 < V < \pi$. V being the dimensionless wave guide parameter.

- 5. (a) Explain how to produce and analyze plane and circularly polarized light from a beam of polarized light.
 - (b) What is the SOP of electromagnetic wave having electric field vector: 12,3

$$\overline{\mathbf{E}} = 2\sin(\omega t - kz)\hat{i} + 3\sin(\omega t - kz - \frac{\pi}{2})\hat{j}.$$

- 6. (a) Deduce expressions for electric and magnetic fields of an oscillating electric dipole.
 - (b) Suppose that in one inertial system B = 0 but $E \neq 0$ (at some point P). Is it possible to find another system in which the electric field is zero at P. Give reason. 12,3
- 7. (a) Derive the transformation laws for the electric and magnetic fields in the case of parallel plate capacitor.
 - (b) Show that $(E^2 C^2B^2)$ is relativistically invariant.

1381