This question paper contains 3 pr	inted pages]	•
	Roll No.	
S. No. of Question Paper : 855	•	
Unique Paper Code : 22250	4	\mathbf{G}
Name of the Paper : Electr	onic Devices (PHHT 518))
Name of the Course : B.Sc.	Hons.) Physics	
Semester : V		
Duration: 3 Hours		Maximum Marks: 7
. (Write your Roll No. on	the top immediately on rec	eipt of this question paper.)
	uestion No. 1 is compuls	sory.
.* .	Attempt Five questions in	ail.
1. Answer the following questi	ons (any five):	·
(a) What is the position o position change when	the Fermi level in an inti	rinsic semiconductor? How does it
(i) donors and		
(ii) acceptors		
are added to the semi	conductor ?	•
(b) Give two differences b	etween BJT and FET.	3
(c) A phase shift oscilla	or has three identical R	RC sections $R_L = R = 10 \text{ k}\Omega$ and
	e the frequency of oscilla	

3

(d) Convert the following π to T network:

- (e) Compare CE, CB and CC amplifiers in terms of current gain and voltage gain.
- (f) For an abrupt p-n junction in Ge doped with donor and acceptor concentrations of $N_d = 10^{23} \text{ m}^{-3}$ and $N_a = 10^{22} \text{ m}^{-3}$. Calculate the height of the potential barrier. 3
- 2. (a) Find voltage across R using mesh analysis.

- (b) For an unbiased p-n junction, sketch the variation of the space charge, electric field and electric potential as a function of distance across the junction giving the relevant equations.
- 3. (a) For a four terminal network derive its T equivalent circuit in terms of short circuit and open circuit impedances.
 - (b) Explain the formation of depletion layer in a p-n junction diode. Derive the expressions for potential barrier and width of depletion layer for a p-n step junction diode. 8

- 4. (a) With the help of energy band diagram, explain current Vs. voltage characteristics of Tunnel diode in forward and reverse biasing conditions.
 (b) Give advantages of LED over a conventional light bulb.
 - (c) The wavelength of light emitted by a certain LED is 60 nm. Find the energy gap in eV.
- 5. (a) What is negative feedback? How does it affect the input and output impedance of an amplifier (support your answer with derivation)?
 - (b) A transistor used in CE configuration has the following set of h-parameters: $h_{ie} = 1 \text{ k}\Omega$, $h_{fe} = 100$, $h_{re} = 5 \times 10^{-4}$ and $h_{oe} = 2 \times 10^{-5} \text{ S}$ with $R_s = 2 \text{ k}\Omega$ and $R_c = 5 \text{ k}\Omega$, determine input impedance, voltage gain, output impedance and current gain.
- 6. Draw the circuit diagram of a RC coupled amplifier. Draw the a.c. equivalent circuit at mid, low and high frequency respectively. Calculate the voltage gain in mid and low frequency regions.
- (a) Explain the basic concept of amplitude, frequency, and phase modulation. Define
 modulation index and derive power relations between carrier wave and side bands in
 an Amplitude Modulated wave.
 - (b) Draw the circuit diagram of a diode detector for demodulation of AM wave and explain its working.

855