This	ques	tion paper cor	ntains 4 printed p	ages]			
				Roll No.			
S. N	o. of (Question Paper	r : 1603				
Unique Paper Code			: 222604			C	
Name of the Paper		ne Paper	: Nuclear and	Particle Physics (P	ННТ-622)		
Nam	ne of th	ne Course	: B.Sc. (Hons.) Physics			
Semester			: V I				
Dura	ation:	3 Hours				Maximum Marl	ks: 75
		(Write your R	oll No. on the top	immediately on rece	eipt of this que	estion paper.)	
			Attemp	ot any <i>Five</i> question	ns.		
			Questio	n No. 1 is compuls	ory.		
			All quest	ions carry equal ma	arks.		
1.	Ansv	wer any five	:				3×5
	(a)	Determine th	he ratio of the nu	nclear radii of ⁴ H a	nd $^{238}_{92}\mathrm{U}$.		
	(<i>b</i>)	Define nucle	ear cross-section.	In what unit it is n	neasured ?		
	(c)	What factors	s make a fusion r	eaction difficult to	achieve?		
	(d)	A positive p	ion collides with a	a proton and two pro	otons plus ano	ther particle are cr	eated.
			other particle?			;	
	(e)	What is the	e Q value of the	reaction ${}_{2}^{4}$ He + ${}_{7}^{14}$	$N \rightarrow {}^{17}_8O$	+ ¹ ₁ H ?	
	(<i>f</i>)	Why do stal	ble nuclei usually	have more neutror	ns than protor	ns ?	

(2) 1603

2+2+1

(g)	Why does the cross-section for neutron induced reaction increase with decrea	sing neutron
	energy?	
(<i>h</i>)	Differentiate between cloud chamber and bubble chamber.	
(<i>a</i>)	What are the salient features of the shell model and liquid drop model '	? 4+4
(<i>b</i>)	Briefly outline the findings of the Meson theory of nuclear forces.	4
(c)	Compute the density of a typical nucleus and find the resultant mass if we could	manufacture
	a nucleus with radius of 1 cm. Given $r_0 = 1.2 \times 10^{-15}$ m.	3
(<i>u</i>)	Why are only α particles emitted by radioactive nuclei, while protons and	neutrons are
	not ?	2
(<i>b</i>)	Show that kinetic energy of alpha particle released in a decay of a nucleus of r	nass number
	A is given as $KE\alpha = (A-4) Q/A$. Q is the Q value of the reaction.	3
(c)	What is the successive disintegration of radioactive atoms? Define secular	and transient
	equilibrium.	4+3+3
(a)	Consider a nucleus at rest, which then spontaneously splits into two fragmen	ts, of masses
	m_1 and m_2 . Show that the fraction of the total kinetic energy that is carried	by fragment
	m_1 is $m_2/(m_1 + m_2)$ assuming relativistic corrections can be ignored.	4
(b)	Establish the relation between the total kinetic energy of the lab system and	d that of the
	centre of mass system for nuclear reactions.	6
(c)	What are the primary and secondary cosmic rays? What is the energy to	ange of the

2.

3.

4.

ultra-high-energy cosmic rays?

(3) 1603

- 5. (a) Classify the fundamental forces based on their strengths, range and reaction rate. 5
 - (b) Distinguish between Baryons and Mesons with examples. 2+2
 - (c) State the conservation principles preserved or violated in the following particle interactions:
 - (i) $\gamma + n \rightarrow \pi + p$
 - (ii) $p + p \rightarrow p + \pi^{-} + k^{0} + \Lambda^{0}$ and
 - (iii) $e + e \rightarrow \mu^* + \pi^*$.
- 6. (a) What is the working principle of a cyclotron? What are its limitations in the relativistic region? How can they be overcome in a synchro-cyclotron? 4+4+4
 - (b) A cyclotron in which the density is 1.4 weber/m² is employed to accelerate protons. How rapidly should the electric field between the dees be reversed? Mass of the proton is 1.67×10^{-27} kg and the charge is 1.6×10^{-19} C.
- 7. (a) What is the working principle of an ionization chamber? How can it be operated as a proportional counter?
 - (b) An electron and a proton of identical energy encounter the same potential barrier. For which is the probability of transmission greatest, and why?
 - (c) Two copper coducting wires are separated by an insulating oxide layer (CuO). Modeling the oxide layer as a square barrier of height 10 V, estimate the transmission coefficient for penetration by 7 eV electrons if the layer thickness is 5 nm. Given mass of the electron $m_{\rho} = 0.51$ Me V and $h = 6.6 \times 10^{-34}$ Js.

(4)

8. (a) Define the critical mass for a fission reaction and give the Lawson criterion for a fusion reaction.

- (b) What conservation laws were apparently being violated in the observed continuous beta spectrum? How did it help Pauli in predicting the nature of a new particle?
- (c) Compute the average lifetime of a radioactive nucleus.

Given Masses of the following nuclei in amu:

Hydrogen = 1.007825

Helium = 4.002603

Nitrogen = 14.003074

Oxygen 17 = 16.999131.

4