This question paper contains 4 printed pages] Roll No.					
S. No. of	Question Paper	: 1601	·		
Unique P	aper Code	: 222602	C		
Name of the Paper : Statistical Physics (PHHT-620)					
Name of the Course : B.Sc. (Hons.) Physics					
Semester :		: VI			
Duration: 3 Hours Maximum Marks: 7					
(Write your Roll No. on the top immediately on receipt of this question paper.)					
Attempt Five questions in all. Question No. 1 is compulsory.					
All questions carry equal marks. Symbols have their usual meanings.					
1. Attempt any five of the following:] 3>	×5=15	
(<i>a</i>)	(a) What do you mean by an ensemble? Which type of ensemble would be used to describe				
	the behaviou	r of a photon gas	?		
(<i>h</i>)	Define the ter	Define the terms: microstate, macrostate and thermodynamic probability.			
. (c)	Differentiate	Differentiate between -100°C and -100K. Which of the two is hotter?			
(d)	Distinguish b	petween classical g	as and a photon as at normal temperature.	P.T.O.	

(2)

- (e) Show all the possible microstates for a system having two particles and two quantum states, if it obeys:
 - (i) M-B,
 - (ii) B-E, and
 - (iii) F-D statistics.
- (f) Give two unique properties of He-II.
- (g) What do you mean by Ultraviolet catastrophe? Explain with the help of a diagram.
- (h) What are white dwarf stars? What is the significance of Chandrasekhar mass limit?
- 2. (a) Obtain the expression for the thermodynamic probability of a system obeying M-B statistics and hence evaluate the M-B distribution function.
 - (b) Show that the single particle partition function for an ideal monoatomic gas is given by:

$$Z = V \left(\frac{2\pi mkT}{h^2}\right)^{3/2}$$

- 3. (a) Obtain the expressions for the pressure exerted by normal and diffuse radiation.
 - (b) Derive Wien's displacement law.
 - (c) Calculate the wavelength corresponding to the maximum emission from the Sun's surface, at a temperature of 6000 K.

 5,8,2

(3)

4. (a) Write down the single particle partition function for a system having two energy levels with energies:

$$\in_1 = -\mu B$$
 and $\in_2 = \mu B$

- (h) Evaluate the thermodynamic functions—internal energy, entropy, specific heat and magnetization, for such a system. Show with the help of graphs, the variation of these as a function of kT/μB.
- 5. (a) What is Bose-Einstein condensation? Derive the expression for the condensation temperature of a Bose gas.
 - (b) Give Bose's derivation of Planck's law.
 - (c) Using this, show that the Stefan's constant is given by: 6,6,3

$$\sigma = \frac{2\pi^5 k^4}{15c^2 h^3}$$

- 6. (a) State and derive the law of equipartition of energy. What are the conditions for the law to be valid?
 - (b) Apply this law to find out the specific heat capacities of monoatomic and diatomic gases.
 - (c) Why does the specific heat so obtained for a diatomic gas not agree with the experimentally observed values?

 9,4,2

(4)

- 7. (a) Define Fermi energy. Obtain the expression for the Fermi energy of an electron gas.
 - (b) Find out the zero-point energy and the zero-point pressure of a Fermi gas and hence deduce its equation of state.
 - (c) Given that the electron density in potassium is 1.4×10^{28} m⁻³, find out the average energy of an electron in the metal. 5,7,3