[This question paper contains 4 printed pages.]

Your Roll No.

1043

B.Sc. (Hons.) / I

 \mathbf{C}

STATISTICS - Paper III

A-223: (Mathematics - III)

(Admissions of 1999 and onwards)

Time: 2 Hours Maximum Marks: 38

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt Four questions in all, selecting at least two questions from each Section.

SECTION I

1. (a) Find a necessary condition for the sum of two roots of the equation

$$x^4 - px^3 + qx^2 - rx + s = 0$$

to be equal to the sum of the other two.

(b) If α , β , γ be the roots of the equation

$$x^3 - px^2 + qx - r = 0$$

find the value of

(i)
$$(\beta + \gamma)(\gamma + \alpha)(\alpha + \beta)$$
 (ii) $\sum \left(\frac{\alpha}{\beta}\right)$.

(c) Form the cubic whose roots are the values of α , β , γ given by the relations

$$\sum \alpha = 3$$
, $\sum \alpha^2 = 5$. $\sum \alpha^3 = 11$

(2.3.4%)

Hence find the value of $\sum \alpha^4$.

2. (a) If $a = \cos \alpha + i \sin \alpha$, $b = \cos \beta + i \sin \beta$, $c = \cos \gamma + i \sin \gamma$.

Prove that $\frac{(b+c)(c+a)(a+b)}{abc}$ is real and equal to

$$8\cos\frac{1}{2}(\beta-\gamma)\cos\frac{1}{2}(\gamma-\alpha)\cos\frac{1}{2}(\alpha-\beta).$$

- (b) Sum the series $\cos\theta + x \cos 2\theta + x^2 \cos 3\theta + ...$ to n terms. (4.5½)
- 3. (a) If a, b, c be all positive, then show that

$$-\frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{a+b} \ge \frac{3}{2}$$
.

(b) State and prove Cauchy-Schwartz inequality for the two sets of real numbers $(a_1, a_2, ..., a_n)$ and $(b_1, b_2, ..., b_n)$. Hence or otherwise, for the real numbers $(c_1, c_2, ..., c_n)$, prove that

$$(c_1 + c_2 + ... c_3)^2 \le n^2 (c_1^3 + c_2^3 + ... c_n^3)$$
 (4.5½)

3

SECTION - II

- 4. (a) If $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, Prove that $(al + bA)^n = a^nI + n \ a^{n-1} \ b \ A$ Where I is 2×2 rowed unit matrix.
 - (b) If A and B are idempotent matrices, then (A+B) will be idempotent if and only if AB=BA=0.
 - (c) Prove that every square matrix can be uniquely expressed as the Sum of a Symmetric and Skew Symmetric matrix. (2,4,3½)
- 5. (a) Solve the following system of linear equations by CRAMER'S rule

$$x + ay + a^{2}z + a^{3} = 0,$$

 $x + by + b^{2}z + b^{3} = 0,$

$$x + cy + c^2z + c^3 = 0.$$

(b) Express
$$\Delta = |(b-x)^2 - (a-y)^2 - (a-z)^2|$$

$$|(b-x)^2 - (b-y)^2 - (b-z)^2|$$

$$|(c-x)^2 - (c-y)^2 - (c-z)^2|$$

as a product of two determinants and find its value. $(4\frac{1}{2},5)$

1043 4

- 6. (a) If $A = I_n X(X'X)^{-1}X'$; verify the following
 - (i) Is A Square matrix
 - (ii) Is A Idempotent matrix
 - (iii) Is A Symmetric matrix, if X is non-singular
 - (b) Let e be the $(n \times 1)$ column vector with elements (1,1,...,1), A be $(n \times n)$ matrix and I_n be the unit matrix. Let $M(x) = I_n + x$ e e' where x is a scalar
 - (i) Prove that M(x)M(y) = M(x + y + kxy) where k is the scalar e'Ae
 - (ii) Verify that reciprocal of M(x) is $M\left(\frac{-x}{1+kx}\right)$.

 (5.4½)