[This question paper contains 6 printed pages.]

1045 Your Roll No.

B.Sc. (Hons.) / I

 \mathbf{C}

STATISTICS - Paper V

A-225 (Statistical Methods - I)

(For Admissions of 1999 and onwards)

Time: 2 Hours Maximum Marks: 38

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt Five questions in all. Q. No. 1 is compulsory. Attempt four more questions, selecting at least one question from each Section.

- (a) The mean of 30 observations is 16. On checking it was found that two observations were wrongly copied as 8 and 4. If wrong observations are replaced by correct values 6 and 9, then the correct mean is _____.
 - (b) Obtain Pearson's coefficient of skewness, when mean, mode and standard deviations are 31, 36 and 6 respectively.
 - (c) The mode of binomial distribution with n = 8 and p = 1/3 is _____.

(d) The equations of two regression lines obtained in a correlation analysis are as follows:

$$3X + 12Y - 19 = 0$$
 and $3Y + 9X = 46$. Obtain:

- (i) The value of correlation coefficient.
- (ii) The ratio of coefficient of variability of X to that of Y.
- (e) If all A's are B's and all B's are C's, then show that all A's are C's. (1,1.1,2,1)

SECTION 1

2. {a) If \bar{x}_w is the weighted mean of x_i 's with weights w_i , i = 1, 2, ..., n, prove that:

$$\sum_{i=1}^n w_i \left\{ \left[\sum_{i=1}^n w_i \left(x_i - \overline{x}_w \right)^2 \right] = \sum_{i=1}^n \sum_{j>i}^a w_i \, w_j \left(x_i - x_j \right)^2, \right.$$

where
$$\sum_{i=1}^{n} w_i \neq 0$$
.

(b) From a sample of n observations, the arithmetic mean and variance are calculated. It is then found that one of the values, x_1 , is in error and should be replaced by x_1' . Show that the adjustment to the variance to the correct this error is:

$$\frac{1}{n} (x_1' - x_1) \left(x_1' + x_1 - \frac{x_1' - x_1 + 2T}{n} \right),$$

where T is the total of the original results.

(e) Show that in a discrete series if deviations (X, -M) are small compared with mean M, then

$$G = M \left(1 - \frac{\sigma^2}{2M^2} \right),$$

where M is the arithmetic mean, G the geometric mean and σ is the standard deviation of the distribution. (3,3,2)

- 3. (a) Show that, for a random variable X, if moments of all order exist, then $\mu_{2j+1}^2 \le \mu_{2j}$, μ_{2j+2} , where μ_{j} is the jth central moment.
 - (b) Show that for a discrete distribution, $\beta_2 \ge 1$.
 - (c) Define 'moments'. Express r^{th} moment about mean (μ_r) in terms of various moments about an arbitrary point 'a' (μ_r) . Hence express μ_4 in terms of μ_1' , μ_2' , μ_3' and μ_4' . (3.2.3)

4

SECTION II

- 4. (a) What is 'Legender's principle of least squares'?
 Derive the normal equations for fitting the curve Y = aX + (b/X) to a set of n points (X_i, Y_i), i = 1.2, ..., n.
 - (b) X_1 , X_2 are two variates with variances σ_1^2 and σ_2^2 respectively and ρ is the correlation coefficient between them. Determine the values of the constants 'a' and 'b' which are independent of ρ such that $X_1 + aX_2$ and $X_1 + bX_2$ are uncorrelated.
 - (c) Show that if X' and Y' are the deviations of the random variables X and Y from their respective means, then

(i)
$$r = 1 - \frac{1}{2N} \sum_{i} \left(\frac{X'_i}{\sigma_X} - \frac{Y'_i}{\sigma_Y} \right)^2$$

(ii) $r = -1 + \frac{1}{2N} \sum_{i} \left(\frac{X'_i}{\sigma_X} - \frac{Y'_i}{\sigma_Y} \right)^2$ (3,2,3)

(a) Define partial and multiple correlation coefficients.
 In the usual notations, prove that,

$$R_{23}^2 = \frac{r_{12}^2 + r_{13}^2 - 2r_{12}r_{23}r_{31}}{1 - r_{23}^2} \ge r_{12}^2.$$

(b) In usual notations, prove that the equation of plane of regression of X_1 on X_2 and X_3 is given by

$$\frac{X_1}{\sigma_1}\omega_{11} + \frac{X_2}{\sigma_2}\omega_{12} + \frac{X_3}{\sigma_3}\omega_{13} = 0.$$
 (4,4)

SECTION III

 (a) Show that for binomial distribution with parameters n and p,

$$k_{r+1} = pq \frac{dk_r}{dp}$$
.

where k_r is the r^{th} cumulant. Hence deduce the values of β_t and β_2 .

(b) If X is a Poisson variate with parameter m and μ_r is the rth central moment, prove that

$$m({}^{r}C_{1}\mu_{r-1} + {}^{r}C_{2}\mu_{r-2} + ... + {}^{r}C_{r}\mu_{0}) = \mu_{r+1}.$$

- (c) Show that poisson distribution is a limiting case of negative binomial distribution. (3,3,2)
- (a) Let X be a discrete random variable having geometric distribution with parameter p. Obtain its mean and variance. Also, show that for any two positive integers s and t.

$$P[X > s + t/X \ge s] = P[X > t].$$

- (b) What is a hypergeometric distribution? Find the mean and variance of this distribution. How is this distribution related to binomial distribution.
- (c) Given that (A) = (α) = (B) = (β) = (C) = (γ) = $\frac{N}{2}$ and also that (ABC) = $(\alpha\beta\gamma)$, show that 2(ABC) = (AB) + (AC) + (BC) $\frac{N}{2}$. (3,3,2)