[This question paper contains 4 printed pages.]

Sr. No. of Question Paper: 8778 C Roll No......

Unique Paper Code : 237153

Name of the Paper : STHT-103 : Algebra – I

Name of the Course : B.Sc. (H) Statistics, Part I

Semester : I

Duration : 3 Hours

Maximum Marks : 75

Instructions for Candidates

1. Write your Roll No. on the top immediately on receipt of this question paper.

2. Attempt Six questions in all, selecting three questions from each Section.

SECTION I

1. (a) Solve the equation $x^4 + 15x^3 + 70x^2 + 120x + 64 = 0$, the roots being in G.P.

(b) Form the cubic whose roots are the values of α , β , γ given by the relation $\Sigma \alpha = 3$, $\Sigma \alpha^2 = 5$, $\Sigma \alpha^3 = 11$. Hence or otherwise find the values of $\Sigma \alpha^4$ and $\Sigma \alpha^{-4}$. (5½,7)

2. (a) If $a = \cos \alpha + i \sin \alpha$, $b = \cos \beta + i \sin \beta$, $c = \cos \gamma + i \sin \gamma$, and a/b + b/c + c/a = -1, prove that $\cos(\beta - \gamma) + \cos(\gamma - \alpha) + \cos(\alpha - \beta) + 1 = 0$.

(b) Show that the equation

$$cos(2\theta - \alpha) = p cos(\theta - \beta)$$

can be satisfied by four values θ_1 , θ_2 , θ_3 , θ_4 of θ , of which no two differ by a multiple of 2π . Show also that

$$\theta_1 + \theta_2 + \theta_3 + \theta_4 - 2\alpha = 2k\pi$$
, k being an integer.

(c) Sum to n terms the series:
$$\sin \theta + \frac{1}{3} \sin 2\theta + \frac{1}{3^2} \sin 3\theta + \dots$$
 (4½,4,4)

3. (a) If a, b, c are positive integers, then prove that

$$\left(\frac{bc+ca+ab}{a+b+c}\right)^{a+b+c} > \sqrt{\left(bc\right)^a \left(ca\right)^b \left(ab\right)^c}.$$

(b) If x, y, z are all positive numbers such that $x^3 + y^3 + z^3 = 81$, then prove that

$$x + y + z \le 9.$$

(c) If a, b, c > 0 and $a \ne b \ne c$, then show that

$$\frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{a+b} > \frac{3}{2}.$$
 (4½,4,4)

4. (a) Prove that

 $256 \sin^5\theta \cos^4\theta = \sin 9\theta - \sin 7\theta - 4\sin 5\theta + 4\sin 3\theta + 6\sin \theta.$

(b) Solve the equation

$$x^3 + 6x^2 + 12x - 19 = 0$$

by removing its second term.

- (c) If α , β , γ are the roots of the equation $x^3 px^2 + qx r = 0$, then find the value of
 - (i) $\sum \alpha^2 \beta$

(ii)
$$\sum \alpha^2 \beta^2$$
 (5,4½,3)

SECTION II

5. (a) Show that the possible square roots of the two rowed unit matrix I are

$$\pm 1$$
 and $\begin{pmatrix} \alpha & \beta \\ \gamma & -\alpha \end{pmatrix}$ where $1 - \alpha^2 = \beta \gamma$.

- (b) Prove that
 - (i) $tr(AA') \ge 0$,
 - (ii) If $A = (a_{ij})$ is a symmetric matrix of order n, then

$$tr(A^2) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}^2$$
.

- (c) If A is a symmetric and B a skew-symmetric matrix, both of order n such that (A + B) is non-singular and $C = (A + B)^{-1} (A B)$, then prove that
 - (i) C'(A+B)C = A + B
 - (ii) C'(A-B)C = A B

(iii)
$$C'AC = A$$
 (3½,5,4)

- 6. (a) If A is a non-singular matrix of order n then
 - (i) $|adj A| = |A|^{n-1}$
 - (ii) $adj(adjA) = |A|^{n-2} A$
 - (b) For each real number x such that -1 < x < 1, let A(x) be the matrix defined as $A(x) = \left(1 x^2\right)^{-1/2} \begin{pmatrix} 1 & -x \\ -x & 1 \end{pmatrix}$. Show that A(x) A(y) = A(z), where $z = \frac{x+y}{1+xy}$. Deduce that $(A(x))^{-1} = A(-x)$.
 - (c) Prove that if the matrix product AB of two square matrices is zero then either A = O or B = O or both A and B are singular matrices. $(4,4\frac{1}{2},4)$
- 7. (a) Evaluate

$$\Delta = \begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^3 & b^3 & c^3 \end{vmatrix}.$$

Hence find its value when a + b + c = 0.

- (b) Prove that every square matrix can be expressed uniquely as P + iQ where P and Q are Hermitian matrices.
- (c) Define Nilpotent matrix. If A is nilpotent matrix of index 2, then show that $A(I \pm A)^n = A$. (4,5,3½)
- 8. (a) Solve the following equations:

$$x + 2y + 3z = 14$$

 $3x + y + 2z = 11$
 $2x + 3y + z = 11$

with the help of matrices.

(b) Prove that

$$\begin{vmatrix} a+ib & c+id \\ -c+id & a-ib \end{vmatrix} \times \begin{vmatrix} \alpha-i\beta & \gamma-i\delta \\ -\gamma-i\delta & \alpha+i\beta \end{vmatrix}$$

where $i^2 = -1$, can be written in the form

$$\begin{vmatrix} A-iB & C-iD \\ -C-iD & A+iB \end{vmatrix}$$

and hence prove that

$$(a^2 + b^2 + c^2 + d^2)(\alpha^2 + \beta^2 + \gamma^2 + \delta^2) = (A^2 + B^2 + C^2 + D^2).$$

(c) Show that a skew symmetric determinant of odd order vanishes.

 $(4,5\frac{1}{2},3)$