[This question paper contains 2 printed pages.]

Sr. No. of Question Paper	:	6697	D	Your Roll No
Unique Paper Code	:	237152		
Name of the Course	:	B.Sc. (H) Statisti	cs	
Name of the Paper	:	STHT - 102 : Cal	culus – I	
Semester	:	I		
Time : 3 Hours				Maximum Marks : 75

Instructions for Candidates

1. Write your Roll No. on the top immediately on receipt of this question paper.

- 2. Attempt six questions in all.
- 3. Selecting four from Section A and two from Section B.

SECTION A

- 1. (a) If $y = (x^2 1)^n$, show that $(x^2 1)y_{n+2} + 2xy_{n+1} n(n+1)y_n = 0$.
 - (b) If $u = r \sin \theta \cos \phi$, $v = r \sin \theta \sin \phi$ and $w = r \cos \theta$, prove that $\frac{\partial(u, v, w)}{\partial(r, \theta, \phi)} = r^2 \sin \theta.$ (6,6¹/₂)
- 2. (a) Find the points of inflexion of the curve $y = (x 1)^3(x 5)$.
 - (b) Find the asymptotes of the curve

$$x^{3} + 2x^{2}y - xy^{2} - 2y^{3} + xy - y^{2} - 1 = 0$$
(6,6¹/₂)

- 3. (a) Locate the double points of the curve $x^3 + 2x^2 + 2xy y^2 + 5x 2y = 0$, and discuss their nature.
 - (b) Trace the curve $r \cos \theta = a \cos 2\theta$. (6,6¹/₂)

P.T.O.

6697

4. (a) Trace the curve $y^2 (a^2 - x^2) = x^4$.

(b) If
$$u = f(r)$$
, where $r = \sqrt{x^2 + y^2 + z^2}$, show that

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f''(x) + \frac{1}{r}f'(x). \qquad (6,6\frac{1}{2})$$

5. (a) Obtain maximum and minimum value of the function $u = xy + \frac{a^3}{x} + \frac{a^3}{y}$.

(b) It
$$u = \tan^{-1}\frac{y}{x}$$
, show that $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = 0$. (6,6¹/₂)

SECTION B

- 6. Solve the following differential equations :
 - (a) $p \frac{1}{p} = \frac{x}{y} \frac{y}{x}$, where $p = \frac{dy}{dx}$.

(b)
$$\left(\frac{e^{-2\sqrt{x}}}{\sqrt{x}} - \frac{y}{\sqrt{x}}\right)\frac{dx}{dy} = 1$$

(c)
$$(1 + e^{x/y})dx + e^{x/y}\left(1 - \frac{x}{y}\right)dy = 0$$
 (4,4,4¹/₂)

- 7. (a) Show that the equation $\frac{2x}{y^3}dx + \frac{y^2 3x^2}{y^4}dy = 0$ is exact and hence find its solution.
 - (b) Solve the following differential equations :

(i) p = tan(y - xp), (ii) $y = xp^2 + p$, where $p = \frac{dy}{dx}$. (4½,8)

8. Solve the following differential equations :

(i)
$$(D^2 + 5D + 6)y = e^{-2x} + \sin x$$

(ii) $(D^2 + 2D + 1)y = x \cos^2 x$
(iii) $(D^3 + 2D^2 + D)y = e^x \sin 2x$ (4,4,4¹/₂)

(200)