[This question paper contains 4 printed pages.]

Sr. No. of Question Paper	:	6698	D	Your Roll No
Unique Paper Code	:	237153		
Name of the Course	: B.Sc. (H) Statistics			
Name of the Paper	:	STHT-103 : Alg	ebra – I	
Semester	:	I		
Time : 3 Hours				Maximum Marks : 75

Instructions for Candidates

- 1. Write your Roll No. on the top immediately on receipt of this question paper.
- 2. Attempt six questions in all, selecting three questions from each Section.

SECTION I

- 1. (a) If α , β , γ are the roots of the equation $x^3 + 7x^2 + 3x 5 = 0$, then find the value of
 - (i) $\sum \frac{\beta^2 + \gamma^2}{\beta\gamma}$ (ii) $(\beta + \gamma)(\gamma + \alpha)(\alpha + \beta)$ (iii) $\sum \frac{1}{\alpha^2}$
 - (b) Solve the equation $3x^4 40x^3 + 130x^2 120x + 27 = 0$, given that the product of two of its roots is equal to the product of the other two.
 - (c) Form an equation whose roots are greater by 4 than the roots of the equation $x^4 - 6x^3 - 38x^2 - 3x + 17 = 0.$ (4^{1/2},5,3)

P.T.O.

6698

2. (a) By substituting

$$z = \cos 2\theta + i \sin 2\theta,$$

$$a = \cos 2\alpha + i \sin 2\alpha,$$

$$b = \cos 2\beta + i \sin 2\beta,$$

in the identity

$$\frac{1}{(z-a)(z-b)} = \frac{1}{(a-b)}\left(\frac{1}{(z-a)} - \frac{1}{(z-b)}\right),$$

show that

 $\sin(\alpha-\beta)\cos(\alpha+\beta+2\theta) + \sin(\beta-\theta)\cos(\beta+\theta+2\alpha) + \sin(\theta-\alpha)\cos(\alpha+\theta+2\beta) = 0.$

(b) Prove that the equation

$$\cos 2\phi + p \cos \phi + q \sin \phi + r = 0$$
,

has in general, four solutions ϕ_1 , ϕ_2 , ϕ_3 , ϕ_4 between 0 and 2π . Also show that $\phi_1 + \phi_2 + \phi_3 + \phi_4$ is a multiple of 2π .

(c) Sum the series :

$$\cos\theta + x \cos 2\theta + x^2 \cos 3\theta + \dots \text{ to n terms.}$$
 (5,4¹/₂,3)

3. (a) If n is a positive integer, then prove that

(i)
$$n! < \left(\frac{n+1}{2}\right)^n$$

(ii)
$$n^{n} \left(\frac{n+1}{2}\right)^{2n} > (n!)^{3}$$

- (b) State and prove Cauchy Schwartz inequality.
- (c) If a, b, c > 0 and $a \neq b \neq c$, then show that :

$$(a+b)^3 + (b+c)^3 + (c+a)^3 \ge \frac{8}{9}(a+b+c)^3.$$
 (4,4¹/₂,4)

6698

4. (a) Find the modulus and the argument of the complex number :

$$\frac{(\sin\alpha + i\cos\alpha)^4}{(\cos\alpha - i\sin\alpha)^3}$$

(b) Prove that

$$128 \sin^3\theta \cos^5\theta = -\sin 8\theta - 2 \sin 6\theta + 2 \sin 4\theta + 6 \sin 2\theta.$$

(c) If α , β , γ be the roots of the equation $x^3 + px + q = 0$ then form an equation whose roots are $(\beta - \gamma)^2$, $(\gamma - \alpha)^2$, $(\alpha - \beta)^2$. $(3\frac{1}{2}, 4\frac{1}{2}, 4\frac{1}{2})$

SECTION II

- 5. (a) Prove that the only matrices which are commutative for multiplication, with a diagonal matrix with distinct diagonal elements, are diagonal matrices.
 - (b) If A is a real skew-symmetric matrix such that

$$A^2 + I = O,$$

show that A is orthogonal and is of even order.

- (c) Find the value of adj(P⁻¹) in terms of P where P is a non-singular matrix and hence show that adj(Q⁻¹BP⁻¹) = PAQ given that adj(B) = A and |P| = |Q| = 1.
 (3,4¹/₂,5)
- (a) If A is Hermitian (Skew-Hermitian) then show that B^θAB is Hermitian (Skew-Hermitian).

(b) If $F(\alpha) = \begin{pmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix}$, $G(\beta) = \begin{pmatrix} \cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta \end{pmatrix}$, then show that

the inverse of the matrix $F(\alpha) G(\beta)$ is $G(-\beta) F(-\alpha)$.

(c) Use the inverse of the matrix to solve the given system of equations

$$2x - y + 3z = 9$$

$$x + y + z = 6$$

$$x - y + z = 2$$
(3,5,4'/2)

P.*T*.*O*.

7. (a) If x, y, z are different and

6698

A =
$$\begin{vmatrix} x & x^2 & 1+x^3 \\ y & y^2 & 1+y^3 \\ z & z^2 & 1+z^3 \end{vmatrix} = 0,$$

then show that 1 + xyz = 0.

- (b) Prove that the determinant of a skew-symmetric matrix of even order is the square of the polynomial function of its elements.
- (c) If A and B are two matrices of the same order $p \times q$, then show that

$$(A + B)^{\theta} = A^{\theta} + B^{\theta}.$$
 (4¹/₂,5,3)

8. (a) Express the determinant

$$\begin{vmatrix} 1 & \cos(\beta-\alpha) & \cos(\gamma-\alpha) \\ \cos(\alpha-\beta) & 1 & \cos(\beta-\gamma) \\ \cos(\alpha-\gamma) & \cos(\beta-\gamma) & 1 \end{vmatrix}$$

as a product of two determinants. Hence evaluate it.

- (b) If A is an idempotent matrix and A + B = I, then show that B is an idempotent matrix and AB = BA = O.
- (c) If A and B are two $n \times n$ non-singular matrices, then show that adj(AB) = adj(B) . adj(A) (6,3,3¹/₂)

(200)

: