This question paper contains 4 printed pages]

Roll No.									

S. No. of Question Paper: 1855

Unique Paper Code : 237252 C

Name of the Paper : Calculus II (STHT-201)

Name of the Course : B.Sc. (H) Statistics

Semester : II

Duration: 3 Hours Maximum Marks: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt two questions from each Section.

Section I

1. (a) If the equation:

$$ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$$

represents two straight lines, prove that the product of the lengths of the perpendiculars from the origin on these lines is :

$$\frac{c}{\sqrt{(a-b)^2+4h^2}}.$$

(b) Show that the straight lines given by the equation:

$$(ax + by)^2 - 3(bx - ay)^2 = 0$$

form with the line ax + by + c = 0 an equilateral triangle, whose area is:

$$c^2 / [\sqrt{3}(a^2 + b^2)].$$
 6,6½

2. (a) Tangents are drawn from the point (h, k) to the circle $x^2 + y^2 = a^2$. Prove that the area of the triangle formed by them and the straight line joining their points of contact is:

$$\frac{a(h^2+k^2-a^2)^{3/2}}{(h^2+k^2)}.$$

- (b) Show that the tangents to a parabola at the extremities of a focal chord intersect at right angles on the directrix.

 6.6½
- 3. (a) Find the condition that the line $x\cos\alpha + y\sin\alpha = p$ is a normal to the ellipse:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

(b) From the points on the circle $x^2 + y^2 = a^2$, tangents are drawn to the hyperbola $x^2 - y^2 = a^2$. Show that the locus of the middle points of chord of contact is the curve:

$$(x^2 - y^2)^2 = a^2 (x^2 + y^2)^2$$
.

Section II

- 4. (a) Evaluate any two of the following:
 - (i) $\int_0^{\pi/2} \log \sin x \ dx$

(ii)
$$\int \frac{x^3 + 1}{(x+2)^2 (x-1)} dx$$

(iii)
$$\int \frac{x^2-1}{1+x^2} dx$$

(3)

(b) Evaluate:

$$\int (3x-2)\sqrt{(x^2+x+1)} \ dx \ . 7,5\frac{1}{2}$$

- 5. (a) Obtain the reduction formula for $\int \sin^n x \, dx$. Hence, evaluate $\int \sin^4 x \, dx$.
 - (b) Evaluate:

$$\int \frac{x+1}{\sqrt{x^2-x+1}} \, dx \, . \tag{7.5}$$

6. (a) Find the limit of the sum:

$$\sum_{r=1}^{n-1} \frac{1}{n} \sqrt{\frac{n+r}{n-r}},$$

when n tends to infinity.

(b) Find the area of the curvilinear triangle, with one vertex at the origin, lying in the first quadrant and bounded by the curves :

$$y^2 = 4ax$$
, $x^2 = 4ay$, $x^2 + y^2 = 5a^2$. 6,61/2

Section III

7. (a) Find the perimeter of the cardioid:

$$r = a(1 - \cos \theta)$$
.

(b) Find the volume of the solid obtained by revolving the cardioid $r = (1 + \cos \theta)$ about the initial line. 6,6%

- 8. (a) Obtain the relation between beta and gamma functions and hence, evaluate the value of $\Gamma\left(\frac{1}{2}\right)$.
 - (b) Evaluate:

$$\Gamma(-1/2), \Gamma(-3/2), \Gamma(-5/2).$$
 7,5½

9. (a) Change the order of integration in the double integral:

$$\int_0^{2a} \int_{\sqrt{2ax-x^2}}^{\sqrt{2ax}} f(x, y) dxdy.$$

(b) Evaluate:

$$\int_0^a \frac{\log(1+ax)}{1+x^2} \, dx \tag{6.6}$$