[This question paper contains 4 printed pages.]

Sr. No. of Question Paper: 1197 E Your Roll No......

Unique Paper Code : 237253

Name of the Course : B.Sc. (H) STATISTICS

Name of the Paper : ALGEBRA II [STH 202]

Semester : II

Duration: 3 Hours Maximum Marks: 75

Instructions for Candidates

1. Write your Roll No. on the top immediately on receipt of this question paper.

- 2. Attempt SIX questions in all.
- 3. Question No. 1 is compulsory.
- 4. Attempt Five more questions selecting atleast two questions from each Section.
- 5. Use of simple calculator to be allowed.
- 6. Attempt all parts of a question in continuation.

1. (a) State whether the following statements are true or false:

- (i) Inverse of $E_{ij}(k) \neq 0$ is $E_{ij}(\frac{1}{k})$.
- (ii) Square matrix is non-singular if zero is not one of its characteristic roots.
- (iii) Generalized inverse of a matrix of any order always exists.
- (iv) The equation AX = 0 has a non-zero solution-if and only if the rank 'r' of A is less than the number 'n' of its columns i.e. of the unknowns.
- (v) The set of all positive integers is a ring for ordinary addition and multiplication.
- (b) Let $A = \begin{pmatrix} 5 & 3 & 1 \\ 5 & 3 & 1 \\ 5 & 3 & 1 \end{pmatrix}$, without any calculation find one eigen value of A. Justify

your answer.

(c) Is the matrix
$$\begin{pmatrix} 0 & 1 & 3 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{pmatrix}$$
 equivalent to I_3 ? Justify.

- (d) Define:
 - (i) Index of a real quadratic form;
 - (ii) Discriminant of the quadratic form.
- (e) Show that no skew symmetric matrix can be of rank 1.
- (f) If A is a m × n matrix of rank p and L and B are two non-singular matrices of order m and n respectively, then write down the form of LAB.

(5,2,2,2,2,2)

SECTION I

- 2. (a) Prove that every non-singular matrix can be reduced to the normal form by:
 - (i) E-row transformation only; and
 - (ii) E-column transformation only.

Hence or otherwise find the rank of the matrix:

$$\mathbf{A} = \begin{pmatrix} 2 & 3 & -1 & -1 \\ 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2 \\ 6 & 3 & \mathbf{0} & -7 \end{pmatrix}$$

(b) Discuss for all values of k, the solutions for the following system of equations:

$$2x + 3ky + (3k + 4)z = 0$$

$$x + (k + 4)y + (4k + 2)z = 0$$

$$x + 2(k+1)y + (3k + 4)z = 0$$
(6,6)

- 3. (a) If X_i and X_j are the characteristic vectors corresponding to two distinct characteristic roots λ_i and λ_j respectively of a $n \times n$ square matrix A then
 - (i) X_i and X_i are always linearly independent.

- (ii) X_i and X_i are orthogonal if A is symmetric.
- (b) Show that the matrix $A = \begin{bmatrix} 1 & 2 & 0 \\ 2 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$ satisfies Cayley-Hamilton theorem.

Hence or otherwise obtain the value of A^{-1} and A^{-2} . (6,6)

- 4. (a) Identify the nature of the quadratic form $4x^2 + 9y^2 + 2z^2 + 8yz + 6zx + 6xy$ and hence find the rank, index and signature of the form.
 - (b) Prove that the definiteness of a quadratic form is invariant under non-singular linear transformation. (7,5)
- 5. (a) If $B = \begin{bmatrix} 2 & \sqrt{2} \\ \sqrt{2} & 1 \end{bmatrix}$, then find the characteristic equation of B and verify that

the matrix B satisfies the equation. Also find the characteristic roots and corresponding characteristic vectors of B.

(b) Prove that the characteristic roots of a square matrix A of order 3 are same as that of any of its transformed matrix, PAP-1 where P is any non-singular matrix of order 3. Also if

$$P = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}; A = \frac{1}{2} \begin{pmatrix} b+c & c-a & b-a \\ c-b & c+a & a-b \\ b-c & a-c & a+b \end{pmatrix}.$$

Determine the characteristic roots of the matrix A.

SECTION II

- 6. (a) If G is a generalized inverse of X'X, then prove that
 - (i) G' is also a generalized inverse of X'X.
 - (ii) XGX'X = X, ie. GX' is a generalized inverse of X.

(6,6)

- (iii) XGX' is invariant to G.
- (iv) XGX' is symmetric whether G is or not.
- (b) Discuss the algorithm for finding a generalized inverse of a given matrix.

Hence, compute a generalized inverse of the matrix
$$\begin{pmatrix} 18 & 2 & 46 \\ 2 & 1 & 2 \\ 46 & 2 & 130 \end{pmatrix}$$
. (6,6)

- 7. (a) If $A = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$, where α , β , γ and δ are sub-matrices and $|\alpha| \neq 0$, then find the inverse of A by method of partitioning.
 - (b) Define a commutative group and order of a finite group. Prove that the totality of all positive rational numbers forms an abelian group under the composition defined by a * b = (ab) / 2. (6,6)
- 8. (a) Define orthonormal basis. Using the Schmidt Orthogonalisation process construct an orthonormal basis for E³ from the following set of basis vectors:

$$a_1 = [1,1,1]; a_2 = [0,1,1]; a_3 = [0,0,1]$$

- (b) (i) Do the vectors (1,1,0), (0,1,2) and (0,0,1) form a basis of $V_3(R)$?
 - (ii) Express the vector v = (3,1,-4) as a linear combination of the vectors $V_1 = (1,1,1), V_2 = (0,1,1)$ and $V_3 = (0,0,1)$. (6,3,3)