[This question paper contains 4 printed pages.]

Your Roll No.

1420

B.Sc. (Hons.) / II

A

STATISTICS - Paper X

(Mathematics - V)

(For Admissions of 1999 and onwards)

Time: 2 Hours

Maximum Marks: 38

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt four questions in all, selecting two questions from each Section.

SECTION I

- (a) Define infimum of a non-empty bounded set S of real numbers. Prove that a real number m is the infimum of S if and only if
 - (i) $x \ge m \quad \forall x \in S \text{ and }$
 - (ii) For each $\varepsilon > 0$, \exists a real number $y \in S$ such that $y < m + \varepsilon$.
 - (b) (i) Give an example of a set which is not a neighbourhood of exactly one of its points.

- (ii) Find the supremum and infimum of the set $\{x \in \mathbb{R}, : |x-1| \le 2\}.$
- (iii) Give an example of an infinite closed set which is not an interval.
- (iv) If $I_n = \left[\frac{1}{n}, 2\right]$, $x \in N$, then find $\bigcup_{n \in N} I_n$.
- (v) What is the derived set of rational numbers? (4½,5)
- 2. (a) Define the convergence of a sequence. Prove that a convergent sequence
 - (i) is bounded and
 - (ii) has a unique limit
 - (b) Show that the sequence $<a_n>$, where $a_1 = 1$, $a_{n+1} = \sqrt{3 a_n}$, $n \ge 1$

converges to 3.

 $(5\frac{1}{2},4)$

3. (a) Let $\sum_{n=1}^{\infty} u_n$ be a positive term series such that $\lim_{n\to\infty} \frac{u_n}{u_{n+1}} = \ell \text{ where } \ell > 1.$

Prove that $\sum_{n=1}^{\infty} u_n$ converges. Discuss the case when $\ell = 1$.

(b) Examine the convergence of

(i)
$$\sum_{n=1}^{\infty} \frac{n}{n+1}$$

(ii) $\sin 1 + \sin \frac{1}{2} + \sin \frac{1}{3} + \cdots$ (5½,4)

SECTION II

4. (a) Examine the continuity and derivability of the function

$$f(x) = |x| + |x-1|, x \in R$$

at $x = 0$ and $x = 1$.

(b) State Lagrange's Mean value theorem. Use it to show that

$$\frac{v - u}{1 + v^2} < \tan^{-1} v = \tan^{-1} u < \frac{v - u}{1 + u^2},$$
where $0 < u < v$. (5½,4)

(a) Obtain Maclaurin's series expansion of e^x, x ∈ R.
 Hence or otherwise show that

$$e^2 - 3 = \frac{2^2}{2!} + \frac{2^3}{3!} + \frac{2^4}{4!} + \dots$$

(b) Evaluate

(i)
$$\lim_{x\to 0} \frac{\log(1+x)-x}{1-\cos x}$$

(ii)
$$\lim_{x \to 1} (2-x)^{\tan(\frac{\pi x}{2})}$$
 (5½,4)

P.T.O.

6. (a) Show that

$$\int\limits_{0}^{\infty}e^{-x}~x^{n-1}~dx~is~convergent~iff~n>0.$$

(b) Show that the sequence $\{f_n\}$ of functions, where

$$f_n(x) = \frac{1}{(x+n)},$$

is uniformly convergent in [0, a], where a > 0. $(5\frac{1}{2},4)$