[This question paper contains 4 printed pages.]

1422

Your Roll No.

B.Sc. (Hons.) / II

A

STATISTICS - Paper XII

(Probability Theory - II)

(For Admissions of 1999 and onwards)

Time: 2 Hours

Maximum Marks: 38

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt Four questions in all, selecting at least one question from each Section.

SECTION I

1. (a) If X is a random variable and $E(X^2) < \infty$, then prove that

$$P(|X| \ge a) \le E(X^2)/a^2, \quad \forall \ a > 0.$$

Use Chebychev's inequality to show that for n > 36, the probability that, in n throws of a fair die, the number of sixes lies between $\frac{1}{6}n - \sqrt{n}$ and $\frac{1}{6}n + \sqrt{n}$ is at least 31/36.

(b) If $\{X_n\}$ is a sequence of independent Bernoulli variables such that

P.T.O.

$$P(X_i = 1) = p$$
, $P(X_i = 0) = 1 - p$, $0 , $i = 1, \dots, n$ and $S_n = X_1 + X_2 + \dots + X_n$
Find the distribution of S_n for large values of n . $(41/2,5)$$

 (a) Define convergence in probability and convergence in distribution.

Prove that $X_n \xrightarrow{p} C$ iff $F_n(x) \to 0$ or 1 according as x < C or x > C, where $F_n(x)$ is the distribution function of X_n .

(b) Let $\{X_n\}$ be a sequence of mutually independent random variables such that

$$X_n = \pm 1$$
 with probability $\frac{1-2^{-n}}{2}$ and $X_n = \pm 2^{-n}$ with probability 2^{-n-1} .

Examine whether the weak law of large numbers can be applied to the sequence $\{X_n\}$. $(4\frac{1}{2},5)$

SECTION II

 (a) What is a compound distribution? If X has Poisson distribution

$$P(X = r) = \frac{e^{-\lambda}\lambda^{r}}{r!}, r = 0, 1, \dots$$

where the parameter λ is a random variable of the continuous type with the density function

$$f(\lambda) = \frac{a^{\nu} e^{-a\lambda} \lambda^{\nu-1}}{|\nu|}, \ \lambda \geq 0, \ \nu > 0, \ a > 0,$$

derive the distribution of X.

Show that the characteristic function of X is given by

$$\phi_X(t) = E(e^{itX}) = q^{\nu}(1 - pe^{it})^{-\nu},$$

where
$$p = \frac{1}{1+a}$$
, $q = 1-p$.

- (b) Let X_1 , X_2 , ---, X_{2m+1} be an odd-size random sample from a $N(\mu, \sigma^2)$ population. Find p.d.f. of the sample median and show that it is symmetric about μ , and hence has the mean μ . (5½,4)
- 4. (a) (i) Find the p.d.f. of X_(r) in a random sample of size n from the exponential distribution:

$$f(x) = \alpha e^{-\alpha x}, \ \alpha > 0, \ x \ge 0$$

- (ii) Show that $X_{(r)}$ and $W_{rs} = X_{(s)} X_{(r)}$, r < s, are independently distributed.
- (iii) What is the distribution of $X_{(r+1)} X_{(r)}$?
- (b) Discuss how the p.d.f. of a random variable can be obtained from its characteristic function.

 P.T.O.

Let X be a continuous random variable with its characteristic function given by

$$\varphi_{X}(t) = e^{-\frac{1}{2}t^{2}}.$$

Obtain the p.d.f. of X.

 $(4\frac{1}{2},5)$

SECTION III

- 5. (a) If $(X, Y) \sim N(0, 0, 1, 1, \rho)$ then prove that $\rho(X > 0, Y > 0) = \frac{1}{4} + \frac{\sin^{-1} \rho}{2\pi}.$
 - (b) Show that (X, Y) possesses a bivariate normal distribution iff every linear combination of X and Y viz., aX + bY, a ≠ 0, b ≠ 0, is a normal variate. (4½,5)
- 6. (a) If X_1 , X_2 , ---, X_K are K independent Poisson variates with parameters λ_1 , λ_2 , ---, λ_K respectively prove that the conditional distribution $\rho(X_1 \cap X_2 \cap \cdots \cap X_K | X), \text{ where } X = X_1 + X_2 + \cdots + X_K \text{ is fixed, is multinomial.}$
 - (b) If $X \sim N_p\left(\frac{\mu}{\infty}, \Sigma\right)$ and is partitioned as $X = \begin{pmatrix} X_{\kappa\kappa_1}^{(1)} \\ X_{(p-\kappa)\kappa_1}^{(2)} \end{pmatrix}$

Derive the marginal p.d.f. of $X_{\text{ext}}^{(i)}$. (4½,5)