[This question paper contains 4 printed pages.]

1423

Your Roll No.

B.Sc. (Hons.) / II

A

STATISTICS - PAPER-XIII

(Statistical Methods - II)

(Admissions of 1999 and onwards)

Time: 2 Hours

Maximum Marks: 38

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt Four questions in all, Selecting two questions from each Section.

SECTION I

- 1. (a) Find the minimum sample size n for estimating population proportion P with confidence coefficient $(1-\alpha)$ and permissible error E in estimate.
 - (b) What is meant by a statistical hypothesis? What are the two types of errors of decision that arise in testing a hypothesis?
 - (c) Find the m.g.f. of $Z = \log \chi^2$ where $\chi^2 \sim \chi_n^2$. If χ_1^2 and χ_2^2 are independent χ^2 -variates each with

n d.f. and $u = \frac{\chi_1^2}{\chi_2^2}$, deduce that for positive integer K

$$E(U^{K}) = \frac{\Gamma\left(\frac{n}{2} + K\right)\Gamma\left(\frac{n}{2} - K\right)}{\left[\Gamma\left(\frac{n}{2}\right)\right]^{2}}$$
(3,2½,4)

2. (a) If $X_1 + X_2 - - X_n$ is a random sample from $N(\mu, \sigma^2)$, find the p.d.f., mean and variance of

$$S = \left[\sum_{i=1}^{n} (X_{i} - \bar{X})^{2} / (n-1) \right]^{\frac{1}{2}}$$

(b) Let X_1 , X_2 be independent random variables following the probability law $f(x) = e^{-x}$; x > 0.

Find the distribution of $\frac{X_1}{X_2}$ and identify it.
(3½,4)

- (a) Show that t-distribution is symmetrical about its mean.
 - (b) p_1 , p_2 are sample proportions with respect to prevalence of a certain attribute, being based on random samples from two different populations with population proportion P_1 and P_2 . Let p be the pooled estimate of P_1 as well as P_2 . Then show that $var(p) = cov(p_1, p)$ under the assumption $P_1 = P_2$.

(c) If X is a χ^2 -variate with n d.f., then for large n find the distribution of $\sqrt{2X}$ and identify it. (3,3,3½)

SECTION II

4. (a) If \overline{X} and S^2 are the usual sample mean and sample variance (unbiased estimate of σ^2) based on a random sample of n observations from

$$N(\mu, \sigma^2)$$
 and if $T_c = \frac{(\overline{X} - \mu)\sqrt{n}}{S}$, prove that

$$Var(T) = \frac{n-1}{n-3} \text{ and } cov(\overline{X}, T) = \frac{\sigma\sqrt{n-1} \Gamma[(n-2)/2]}{\sqrt{2n} \Gamma(\frac{n-1}{2})}$$

- (b) Obtain the mode of F-distribution with (n_1, n_2) d.f. and show that it lies between 0 and 1. $(5\frac{1}{2},4)$
- 5. (a) If X is a random variable following Poisson distribution with parameter λ , which itself is a random variable such that $2\alpha\lambda$ ($\alpha > 0$), is a χ^2 -variate with 2p degrees of freedom, obtain the unconditional distribution of X and identify it.
 - (b) Suppose X_1 , X_2 , ---, X_n ($n \ge 2$) are independent variates each distributed as $N(0, \sigma^2)$. If

$$u = \frac{X_1}{\sqrt{\frac{1}{n} \cdot \sum_{i=1}^n X_i^2}} \quad and \quad V = \sqrt{\frac{n-1}{n}} \ \frac{V}{\sqrt{1-\frac{V^2}{n}}} \ , \label{eq:u_var}$$

show that $V \sim t_{n-1}$ distribution.

 $(5.4\frac{1}{2})$

- 6. Write short notes on any three of the following:
 - (i) Linear orthogonal transformation
 - (ii) Logarithmic Transformation
 - (iii) Fisher's Z-distribution
 - (iv) Test of difference of means when population variances are equal and known (9½)