[This question paper contains 4 printed pages.]

1049 Your Roll No.

B.Sc. (Hons.) / 11

C

STATISTICS'- Paper X-

B-222: (Mathematics - V)

(For Admissions of 1999 and onwards)

Time: 2 Hours

Maximum Marks: 38

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt four questions in all, selecting two questions from each Section.

SECTION 1

- 1. (a) (i) State Bolzano Weierstrass Theorem for sets.
 - (ii) Give an example of an open set which is not an interval.
 - (iii) Is the set [0,1] = [2,3] closed?
 - (b) Define infimum of a set. Let S be a non empty set of real numbers which is bounded below. Prove

that a real number t is the infimum of S iff the following conditions hold:

- (i) $x \ge t \quad \forall x \in S$,
- (ii) For each positive real number ε , there is a real number $x \in S$ such that $x < t + \varepsilon$.

 $(4\frac{1}{2},5)$

2. (a) Use Cauchy Convergence Criteria to show the sequence $a_n >$ where

$$a_n = 1 + \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{n}, \quad n \in \mathbb{N}$$

doesn't converge.

- (b) Define a monotonic sequence. Prove that, a monotonically increasing sequence which is bounded above, converges. (4½,5)
- 3. (a) If $\sum u_p$ is a positive term series, such that

 $\lim_{n\to\infty} \frac{u_n}{u_{n+1}} = l$, then show that the series diverges if l < 1.

(b) Examine the convergence of the following series:

(i)
$$\frac{1}{2} + \frac{2}{2^2} + \frac{3}{2^3} + \frac{4}{2^4} + \dots$$

(ii)
$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$$
 (4½,5)

SECTION II

4. (a) Show that the function

$$f(x) = [x], x \in [0 3[$$
 is discontinuous at $x = 1$ and $x = 2$.

(b) State Lagrange's mean value theorem. Find a point $c \in \left]0 \right] \frac{1}{2}$ of Lagrange's mean value theorem

if
$$f(x) = x(x-1)(x-2)$$
, $x \in \begin{bmatrix} 0 & \frac{1}{2} \end{bmatrix}$. $(4\frac{1}{2},5)$

- 5. (a) Obtain Maclaurin's series expansion of $\cos x$, $x \in \mathbb{R}$.
 - (b) Evaluate

(i)
$$\lim_{x\to 0} \frac{1-\cos x}{x^2}$$
,

(ii)
$$\lim_{x\to 0+} x^x$$
. (4½,5)

- 6. (a) State and prove Weierstrass's M-test for uniform convergence of a series.
 - (b) Examine the convergence of $\int_2^\infty \frac{dx}{\left(x-1\right)^3}$. (5,4½)