[This question paper contains 4 printed pages.]

1052 Your Roll No.

B.Sc. (Hons.) / II

C

STATISTICS - PAPER-XIII

B-225: (Statistical Methods - II)

(Admissions of 1999 and onwards)

Time: 2 Hours Maximum Marks: 38

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt four questions in all, selecting two questions from each Section.

SECTION I

- 1. (a) What is meant by a statistical hypothesis? What are the two types of errors of decision that arise in testing of a hypothesis?
 - (b) Discuss the test of significance for the difference of standard deviations for large samples.
 - (c) Find the minimum sample size n for estimating population proportion P with confidence coefficient $(1-\alpha)$ and permissible error E in estimate.

(3,312,3)

1052 2

- (a) The sex ratio at birth is sometimes given by the ratio of male to female births instead of the proportion of male to total births. If z is the ratio, i.e., z = p/q, then show that the standard error of z is approximately 1/(1+z)√(z/n), n being large, so that deviations are small compared with mean.
 - (b) (i) Prove that in a random and large sample,

$$\chi^2 = \sum_{i=1}^{k} \left[\frac{(n_i - np_i)^2}{np_i} \right]$$
, follows chi-square

distribution approximately with (k-1) degrees of freedom, where n_i is the observed frequency and np_i is the corresponding expected frequency of the ith class,

$$(i = 1, 2..., k)$$
, $\sum_{i=1}^{k} n_i = n$.

- (ii) State the conditions for the validity of the above χ^2 test? (3½,4+2)
- 3. (a) If $X_1, X_2, ..., X_n$ are i.i.d. U(0,1)-variates, then show that $-2 \log_e P$ follows chi-square distribution with 2n degrees of freedom where $P = X_1 X_2 ... X_n$.
 - (b) Find the distribution of sample correlation coefficient r when the population correlation coefficient $\rho = 0$. Hence deduce that

$$\frac{r}{\sqrt{l-r^2}}\,\sqrt{n-2}$$

follows Student's t-distribution with (n-2) degrees of freedom. (9½)

SECTION - II

- (a) Explain, stating clearly the assumptions involved, the t-test for testing the significance of the difference between the two sample means.
 - (b) If $n_1 = n_2$ in F-distribution, then find the median of F-distribution. Also show that the quartiles Q_1, Q_2 and Q_3 satisfy the condition $Q_1Q_3 = Q_2$.
 - (c) Show that the t-distribution is symmetrical about its mean. (3½,3,3)
- 5. (a) If $X \sim F(1,n)$, Show that $\left(n \frac{1}{2}\right) \log \left(1 + \frac{x}{n}\right) \sim \chi_1^2$, for large n.
 - (b) Let X and Y be two independent normal variates with same normal distribution $N(\mu, \sigma^2)$. Obtain the distribution of

$$Z = \frac{X + Y - 2\mu}{\sqrt{|X - Y|^2}}$$
 (4,5½)

1052 4

- 6. (a) Discuss the variate transformation which stabilizes the variance of the distribution of sample variance.
 - (b) Define Fisher's Z-transformation and obtain its probability function and moment generating function.
 - (c) Let X and Y denote the number of successes and failures respectively in n independent Bernoulli trials with p as probability of success in each trial. Show that

$$\frac{\left(X-np\right)^2}{np}+\frac{\left(Y-n\left(1-p\right)\right)^2}{n\left(1-p\right)}\sim\chi_1^2\ ,$$
 when n is large.
$$(3,4,2\frac{1}{2})$$