[This question paper contains 4 printed pages.]

Sr. No. of Question Paper: 8788 C Roll No......

Unique Paper Code : 237302

Name of the Paper : STHT-303 : Applied Statistics-II

Name of the Course : B.Sc. (Hons.) Statistics, Part II

Semester : III

Duration : 3 Hours

Maximum Marks : 75

Instructions for Candidates

1. Write your Roll No. on the top immediately on receipt of this question paper.

2. Attempt six questions in all.

3. Q. No. 7 is compulsory and the remaining five questions are to be attempted from the Sections A and B, selecting at least two from each section.

SECTION A

- 1. (a) Describe the different components of a time series. Give suitable examples for each.
 - (b) Enumerate the various properties of the curve

$$U_{t} = \frac{k}{1 + e^{a+bt}}$$
 ; b < 0

Trace the curve and describe its different phases with respect to a time series data of production. (5,8)

- 2. (a) Name the characteristic movement of time series with which you will mainly associate
 - (i) an increase in employment for sales during the summer months,

- (ii) a fire in a factory that delays the factory's production for 2 weeks,
- (iii) a continually increasing demand for smaller automobiles,
- (iv) a fall in death rate due to scientific advancement, and
- (v) an era of prosperity,
- (vi) issue of library books during examinations.

Give reasons for your answers.

(b) It is desired to determine a trend curve in a time series by a moving average method covering a consecutive set of nine points which would accurately represent the series if it consists of a cubic polynomial in time variable. Obtain the formula

$$[9,3] = \frac{1}{231}[-21, 14, 39, 54, 59, 54, 39, 14, -21].$$

Further, show that the formula is, in fact, good enough, for a quadratic polynomial. (6,7)

- 3. (a) Describe the method of 'Ratio-to-moving averages' for measuring the seasonal variations, stating clearly the assumptions made.
 - (b) Describe a method for estimating the variance of the random component in a time series, stating clearly the assumptions under which it is applicable. (6, 7)

SECTION B

- 4. (a) What do you understand by the term Statistical Quality Control? Distinguish between 'process' and 'product' control.
 - (b) Discuss the natural tolerance limits and specification limits. What do you understand by Process Capability Ratio? Construct modified control limits for the X chart. (5,8)

- 5. (a) If p_n is the probability of mean of a random sample of size n to exceed UCL and the rth sample is the first to exceed UCL, then show that $E(r) = \frac{1}{p_n}$.
 - (b) Explain the role of the c-chart in statistical quality control. Besides its use in manufacturing, in what other fields has c-chart technique been usefully employed? How are the control limits for c-chart obtained? Justify the distribution used by you for the derivation of the above control limits.
 (5,8)
- 6. (a) Define the terms:
 - (i) Acceptance Quality Level
 - (ii) Lot Tolerance Proportion Defectives
 - (iii) Producer's process average
 - (iv) Producer's risk
 - (v) Consumer's risk
 - (b) Explain the two approaches to find sample number and acceptable number of defectives in a single sampling plan for attributes. (7,6)

SECTION C

- 7. (a) Write a short note on NSSO, highlighting its main functions and major publications.
 - (b) (i) Distinguish between de facto and de jure basis of population enumeration. In which year did India switch from de facto basis to de jure?

- (ii) Name the authorities engaged in collection and publication of price statistics on national level, in India.
- (iii) Which agencies are responsible for the collection and publication of statistics on Trade in India? Name the two groups into which Trade Statistics is classified. (4,6)