[This question paper contains 4 printed pages.]
Sr. No. of Question Paper : 6701 D Your Roll No................
Unique Paper Code : 237352
Name of the Course : B.Sc. (Hons.) Statistics
Name of the Paper : STHT-301: Real Analysis
Semester : III
Duration : 3 Hours
Maximum Marks : 75

Instructions for Candidates

1. Write your Roll No. on the top immediately on receipt of this question paper.
2. Q. No. $\mathbf{1}$ is compulsory.
3. Attempt six questions in all.
4. (a) Write down the supremum and infimum of the following :

$$
\begin{equation*}
S=\left\{1-\frac{(-1)^{n}}{n}: n \in N\right\} \tag{1}
\end{equation*}
$$

(b) Give an example of a set which is
(i) infinite and bounded
(ii) neither bounded above nor bounded below
(c) Write down the set of all limit points of
(i) set Z of integers
(ii) set of rational numbers
(d) (i) Give an example of a bounded sequence which is not convergent.
(ii) If $\lim _{n \rightarrow \infty} a_{n}=1$ and if $<S_{n}>$ be the sequence defined as

$$
\begin{equation*}
S_{n}=\left(a_{1}+a_{2}+\ldots+a_{n}\right) / n \text {, then, find } \lim _{n \rightarrow \infty} S_{n} . \tag{1,1}
\end{equation*}
$$

(e) Show that the series $1+\frac{2}{3}+\left(\frac{2}{3}\right)^{2}+\ldots+\left(\frac{2}{3}\right)^{\mathrm{n}-1}$ converges.
(f) What is an alternating series? Give an example.
(g) Examine the continuity at $\mathrm{x}=0$ for the function defined as

$$
f(x)= \begin{cases}\frac{\sin 2 x}{\sin x}, & x \neq 0 \tag{2}\\ 1, & x=0\end{cases}
$$

(h) Give the geometrical interpretation of Rolle's Theorem.
(i) For what values of ' a ' does $\frac{\sin 2 x+a \sin x}{x^{3}}$ tend to a finite limit as $x \rightarrow 0$. Also find this limit.
2. (a) Let S be a non empty set of real numbers bounded below. Then prove that a real number t is the infimum of S iff the following conditions hold
(i) $\mathrm{x} \geq \mathrm{t}, \quad \forall \mathrm{x} \in \mathrm{S}$
(ii) for each positive real number ε, there is a real number $\mathrm{x} \in \mathrm{S}$ such that $\mathrm{x}<\mathrm{t}+\varepsilon$.
(b) If M and N are neighbourhoods of a point p , then prove that $\mathrm{M} \cap \mathrm{N}$ is also a neighbourhood of p.
3. (a) Define the following :
(i) an open set.
(ii) a monotonic sequence
(iii) a bounded set
(b) Show that the intersection H of an arbitrary family ξ of closed sets is a closed set.
(c) Show that a set is closed iff it contains all its limit points.
4. (a) Prove that $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}$ exists and lies between 2 and 3 .
(b) Show that every Cauchy sequence is bounded.
5. (a) Show that the series $\sum_{\mathrm{n}=1}^{\infty} 1 / \mathrm{n}^{\mathrm{p}}$ converges if $\mathrm{p}>1$ and diverges if $\mathrm{p} \leq 1$.
(b) Test for convergence of the series

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\sqrt{n}}{\sqrt{n^{2}+1}} x^{n} \text { for positive values of } x \tag{6,6}
\end{equation*}
$$

6. (a) Define conditionally convergent series. Show that the series $1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\ldots$ is conditionally convergent.
(b) Let f be a function defined on $[0,1]$ as

$$
\begin{aligned}
& f(x)=\frac{1}{2^{n}}, \text { when } \frac{1}{2^{n+1}} \leq x \leq \frac{1}{2^{n}}, n=0,1,2,3, \ldots \\
& f(0)=0
\end{aligned}
$$

Show that f is continuous except at the points $\mathrm{x}=\frac{1}{2}, \frac{1}{2^{2}}, \ldots, \frac{1}{2^{n}}, \ldots$. Describe the nature of discontinuity at each of these points.
7. (a) Prove that for any quadratic function $p x^{2}+q x+r$, the value of θ in Lagrange's Mean Value Theorem is always $1 / 2$, whatever p, q, r, a and h may be.
(b) Obtain Maclaurin's series expansion of $\sin \mathrm{x}$.
(c) Evaluate any two of the following:
(i) $\lim _{x \rightarrow 0}(1+x)^{1 / x}$
(ii) $\lim _{x \rightarrow 0}\left(x^{k} \log x\right)$ for each fixed $k \in R^{+}$
(iii) $\lim _{x \rightarrow 0}(\tan x)^{\sin 2 x}$
(3,3,2,2,2)

