This question paper cont	ains 4 printed pages]			
, , ,	1 2003	Roll No.		
S. No. of Question Paper	: 1861			
Unique Paper Code	: 237401		C	
Name of the Paper	: STHT-401 (Numeric	al Analysis)	,	
Name of the Course	: B.Sc. (Hons.) (Statis	stics)		
Semester	: IV			
Duration: 3 Hours			Maximum M	1arks : 75
(Write your Roll 1	No. on the top immed	iately on receipt	of this question pape	?r.)
Attempt fiv	ve questions in all s	selecting at lea	ast two questions	
	from eacl	n Section.		
	SECT	ION I		
1. (a) Show that t	the n th divided diffe	erences of a po	dynomial of the n th	degree
are constan	t.			5
(b) Show that	:			
	$\Delta^n \mathcal{O}^m = n(\Delta^{n-1})$	$10^{m-1} + \Delta^n 0^{m-1}$)	

where n and m are positive integers.

P.T.O.

5

(2)

8

7

(c) Use the method of separation of symbols to prove the following identity:

$$U_0 - U_1 + U_2 - U_3 + \dots = \frac{1}{2}U_0 - \frac{1}{4}\Delta U_0 + \frac{1}{8}\Delta^2 U_0 - \frac{1}{16}\Delta^3 U_0 + \dots$$

- 2. (a) Obtain Newton's divided difference formula and hence derive Newton's forward difference formula.
 - (b) The values of f(x) are given at a, b and c. Show that under certain conditions, the maximum or minimum is attained at : 7

$$x = \frac{\sum (b^2 - c^2) f(a)}{2\sum (b - c) f(a)}.$$

- 3. (a) Obtain Stirling's central difference interpolation formula.
 - (b) Establish the following relation:

$$\Delta^r f_i = \delta' f_{i + \frac{r}{2}} = \nabla^r f_{i + r} = r! h^r f[x_i, x_{i+1}, \dots, x_{i+r}].$$

4. (a) What is the purpose of inverse interpolation? Discuss the method of successive approximation or iteration for inverse interpolation.

(b) If U_x be a function whose differences when the increment of x is unity are denoted by δU_x , $\delta^2 U_x$,....... and by ΔU_x , $\Delta^2 U_x$, when the increment of x is n, then if $\delta^2 U_x$, $\delta^2 U_{x+1}$, $\delta^2 U_{x+2}$, are in G.P. with common ratio q, show that :

$$\frac{\Delta U_x - n\delta U_x}{(q^n - 1) - n(q - 1)} = \frac{\delta^2 U_x}{(q - 1)^2}.$$

SECTION II

- 5. (a) State and prove Euler-Maclaurin summation formula.
 - (b) If y_x is a polynomial in x of the third degree, find an expression for $\int_0^t y_x dx$ in terms of y_0 , y_1 , y_2 and y_3 . Use this result to find the value of $\int_0^2 y_x dx$.
- - (b) Show that $\Delta(x!) = x(x!)$ and hence find the value of 7

$$\sum_{1}^{n} (x^2 + 1) (x!).$$

P.T.O.

7

7. Solve any three of the following difference equations:

(i)
$$U_{x+2} - 4U_{x+1} + 4U_x = 2^x$$

(ii)
$$U_{x+2} - 2U_{x+1} + U_x = x^{(3)} + x(-1)^x$$

$$(iii) \ \mathbf{U}_{x+1} - pa^{2x}\mathbf{U}_x = qa^{x^2}$$

(iv)
$$U_{x+2} + a^2 U_x = \cos ax$$
. 5,5,5

1861 4 600