This question paper contains 4+2 printed pages]

Roll No.							
	r I	 ī	l .		1	1	

S. No. of Question Paper: 1862

Unique Paper Code

: 237402

 \mathbf{C}

Name of the Paper

: STHT-402 (Probability and Statistical Methods—IV)

Name of the Course

: B.Sc. (Hons.) (Statistics)

Semester

: IV

Duration: 3 Hours

Maximum Marks: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt five questions in all, selecting two questions

from Section I and three questions from Section II.

SECTION I

1. (a) For the exponential density function $f(x) = e^{-x}$, $x \ge 0$, find the probability density function of the range R in a random sample of size n and show that :

$$E(R) = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n-1}$$

(b) Let X_1, X_2, \ldots, X_n be a random sample of size n from a population having continuous distribution function F(x). Define order statistics of rank k, $1 \le k \le n$. Find its distribution function. Show that for the rectangular distribution:

$$f(x) = \frac{1}{\theta_2}, \, \theta_1 - \frac{\theta_2}{2} \le x \le \theta_1 + \frac{\theta_2}{2},$$

$$E\left[\frac{X_{(r)} - \theta_1}{\theta_2}\right] = \frac{r}{n+1} - \frac{1}{2}.$$
 7,8

- (a) Prove that the mean and variance of a random sample drawn from a normal population are independently distributed. Also write their probability density functions.
 - (b) Let X be distributed as $\chi^2_{(n)}$. Show that

$$x \leq \frac{n}{1 - \mathbf{F}(x)},$$

where $F(x) = P[X \le x]$.

(c) Find the p.d.f. of $\chi_{(n)} = +\sqrt{\chi^2_{(n)}}$, where $\chi^2_{(n)}$ is a Chi-square variate with n degrees of freedom. Also show that :

$$\mu'_r = \mathbb{E}(\chi^r_{(n)}) = 2^{r/2} \frac{\Gamma[(n+r)/2]}{\Gamma[n/2]}.$$

Hence, establish that for large n

$$E(\chi_{(n)}^2) = (E(\chi_{(n)}))^2$$
. 7,3,5

3. (a) If X is Poisson (λ) and χ^2 is a Chi-square variate with 2k degrees of freedom. Prove that for all positive integer k,

$$P[X \le k - 1] = P[\chi^2 > 2\lambda]$$

- (b) Describe the test for testing the significance of the homogeneity of several sample correlation coefficients from a bivariate normal population.
- Let X_1, X_2, \ldots, X_n be a random sample from a population with continuous density. Show that $Y_1 = \min(X_1, X_2, \ldots, X_n)$ is exponential with parameter $n\lambda$ if and only if each X_i is exponential with parameter λ . 5.5.5 P.T.O.

Section II

- 4. (a) Define sampling distribution and standard error of a statistic. Obtain standard error of a sample mean in a random sample of size n from a large population with standard deviation σ.
 - (b) What is meant by a statistical hypothesis? What are the two types of errors involved in testing of a statistical hypothesis? Point out the difference between one-tailed and two-tailed tests.
 - Let p_1 and p_2 be the proportions obtained from samples of size n_1 and n_2 respectively from two populations. Suggest an unbiased estimate of $(P_1 P_2)$, where P_1 and P_2 are the corresponding population proportions. Also obtain its sampling distribution assuming n_1 and n_2 to be large. Hence explain how to test the hypothesis $P_1 = P_2$.

1

5. (a) Show that for t-discribation with n degrees of freedom, mean deviation about mean is given by

5)

$$\frac{\sqrt{n}\Gamma[(n-1)/2]}{\sqrt{\pi}\Gamma[n/2]}.$$

- (b) If (X_i, Y_i) , i=1, 2, ..., n be a random sample of size n from an uncorrelated bivariate normal population, derive the distribution of sample correlation coefficient r. Hence, obtain the p.d.f. of $u=\frac{r\sqrt{n-2}}{\sqrt{(1-r^2)}}$ and identify it.
- 6. (a) Prove that if $n_1 = n_2$, the median of F-distribution is at F = 1 and that the quartiles Q_1 and Q_3 satisfy the condition Q_1 . $Q_3 = 1$.
 - (b) Let $X \sim F_{(2,n)}$, $n \ge 2$. Show that :

$$P[X \ge k] = \left[1 + \frac{2k}{n}\right]^{n/2}$$

Deduce the significance level of F-distribution corresponding to the significance level of probability p.

(c) Let $X \sim F_{(n, m)}$. Obtain the p.d.f. of Y = nX, when m is large. 5,5,5 P.T.O.

(i) Mode of F-distribution and its characteristics;

Write short notes on any three of the following:

- (ii) Applications of t-distribution;
- (iii) Joint p.d.f. of rth and sth order statistics.
- (iv) Test of significance for testing difference of means for large samples. 15

.

7.

•

600