[This question paper contains 4 printed pages.]

1427

Your Roll No.

B.Sc. (Hons.) / III

A

STATISTICS - Paper XIX

(Statistical Inference - I)

(Admissions of 1999 and onwards)

Time: 2 Hours

Maximum Marks: 38

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt four questions in all, selecting two questions from each Section.

SECTION I

- 1. (a) State and prove the Invariance Property of consistent estimators.
 - (b) Let X_1 , X_2 ,, X_n be a random sample from uniform population

$$f(x) = \frac{1}{\beta}, \ 0 < x < \beta.$$

Show that $T_i = \frac{n+1}{n} Y_n$ (where Y_n is the largest

order statistic of a random sample X_1, X_2, \dots, X_n) and $T_2 = 2\overline{X}$ are both unbiased estimators for β . Also compare the relative efficiency of T_1 to T_2 .

- (c) Let T_0 be an MVU estimator and T_1 be an unbiased estimator with efficiency e_0 . Show that no unbiased linear combination of T_0 and T_1 can be an MVU estimator. (3,4,2½)
- 2. (a) State and prove the Cramer-Rao inequality and explain its significance.
 - (b) Let $X \sim N(\theta, r)$, where $r = \frac{1}{\sigma^2}$ is precision and is known. Obtain posterior distribution of θ , when prior distribution of θ is $N(\mu, \tau)$ and τ is the precision. Comment on your result. (5½,4)
- (a) Let Y₁ < Y₂ < Y₃ < Y₄ < Y₅ be the order statistic of the random sample of size 5 from a uniform distribution having p.d.f. f(x, θ) = 1/θ; 0 < x < θ, 0 < θ < ∞. Show that 2Y₃ is unbiased for θ. Determine the joint p.d.f. of Y₃ and Y₅ and E(2Y₃/Y₅) = φ(Y₅). Also compare the variances of 2Y₃ and φ(Y₅).
 - (b) Write short notes on
 - (i) Conjugate Priors

(ii) Bayes rule and the associated Bayes risk (5½,4)

SECTION II

4. (a) Let X_1 , X_2 ,, X_n be a random sample from exponential population with p.d.f.

$$f(x, \theta) = e^{-(x-\theta)}, \quad x \ge \theta, \quad -\infty < \theta < \infty.$$

Show that $X_{(1)} = \min (X_1, X_2,, X_n)$ is complete sufficient statistic for θ . Find a unique continuous function of this statistic which is best statistic for θ .

(b) In sampling from a Power series distribution with probability function

$$f(x, \theta) = \frac{a_x \theta^x}{\psi(\theta)}; x = 0, 1, 2, \dots$$

where a_x may be zero for some x. Show that the maximum likelihood estimator of θ is the rod of the equation

$$\overline{x} = \frac{\theta \cdot \psi'(\theta)}{\psi(\theta)} = \mu(\theta),$$

$$\mu(\theta) = E(X). \qquad (51/2,4)$$

5. (a) Prove that with probability approaching unity as

P.T.O.

 $n \to \infty$, the m.l. estimator exists, which converges in probability to true value of θ .

(b) Let X_1 , X_2 ,, X_n be a random sample of size n from rectangular distribution with p.d.f.

$$f\left(x,\,\theta\right) = \left\{ \begin{array}{l} \frac{1}{\theta}, \quad 0 \leq x \leq \theta \\ 0, \quad \text{elsewhere ,} \quad \theta > 0 \end{array} \right.$$

Let Y be the sample range and ξ be given by

$$\xi^{n-1}\left[n-(n-1)\xi\right] = \alpha.$$

Show that Y and $\frac{Y}{\xi}$ are confidence limits for θ with confidence coefficient $(1-\alpha)$. (6,3%)

- 6. Write short notes on any three of the following:
 - (i) Fisher-Neyman criterion for sufficient statistic
 - (ii) Rao-Blackwell Theorem
 - (iii) Method of least squares
 - (iv) Method of minimum Chi-square (9½)