[This question paper contains 2 printed pages.]

1434 Your Roll No.

B.Sc. (Hons.) / III

A

STATISTICS - Paper XXVI

BIOSTATISTICS

(Admissions of 1999 and onwards)

Time: 2 Hours Maximum Marks: 38

(Write your Roll No. on the top immediately on receipt of this question paper.)

Answer Four questions in all, selecting two from each Section.

SECTION I

- 1. (a) Define crude probability due to risk $R_{\delta}(Q_{i\delta})$. Stating the assumptions explicitly, obtain the expression of $Q_{i\delta}$.
 - (b) Define hazard function $h(\cdot)$, survival function $s(\cdot)$ and death density function $f(\cdot)$. Show that

$$s(t) = \exp\left\{-\int_{0}^{t} h(u)du\right\}$$
 (7.2½)

- 2. (a) Discuss Rhodes method to fit a logistic curve.
 - (b) Define net probability of type B $(q_{i\cdot\delta})$. Obtain relationship between $q_{i\cdot\delta}$ and crude probability.

 $(6,3\frac{1}{2})$

P.T.O.

- 3. (a) Derive Makeham's graduation formula. What is its use?
 - (b) Discuss different types of censoring schemes. (5,4½)

SECTION II

- 4. Define simple stochastic epidemic model. Obtain the probability of r susceptibles at time t i.e. $p_r(t)$, for r = 1, 2, ..., n. (9½)
- 5. (a) Show that m.l.e. $\hat{\mu} = \frac{\displaystyle\sum_{i=1}^{d-1} t_{(i)} + (n-d+1) t(d)}{d}$ is BLUE for μ , under type II censored sample of n patients. Here we assume that each patient has death density function $f(t) = \lambda \exp(-\lambda t)$, $\lambda > 0$, $t \ge 0$.
 - (b) If two risks R_{δ} and R_{ϵ} ($\delta \neq \epsilon$) are such that $Q_{i\delta} > Q_{i\epsilon}$, then show that:

$$q_{i\delta} > q_{i\epsilon} \tag{71/2,2}$$

- (a) Define gametic and genotypic array. Prove that under random mating, genotypic array is the square of the gametic array.
 - (b) State Hardy-Weinberg law. Establish that this law holds asymptotically for the case of overlapping generations. (2½,7)

(600)****