1428

Your Roll No.

B.Sc. (Hons.) / III

A

STATISTICS – Paper XX (Statistical Inference II)

(Admissions of 1999 and onwards)

Time: 2 Hours

Maximum Marks: 38

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt four questions in all, selecting two questions from each Section.

Section I

- 1. (a) Explain the following terms:
 - (i) errors of first and second kind;
 - (ii) simple and composite hypotheses;
 - (iii) the best critical region.
 - (b) Let p be the probability that a coin will fall head in a single toss. In order to test H_0 : $p = \frac{1}{2}$ against

 H_1 : $p = \frac{3}{4}$, the coin is tossed 5 times and H_0 is rejected, if more than 3 heads are obtained. Find the probability of type I error and power of the test.

51/2.4

- 2. (a) State and prove Neyman-Pearson lemma.
 - (b) Let X₁, X₂, X_n be a random sample from N(μ,θ), μ being known and θ being unknown. Obtain the best critical region of size α for testing H₀: θ = θ₀ against H₁: θ = θ₁ (≠θ₀). Hence obtain the power function of the test.

5, 41/2

3. Describe Wald's S.P.R.T., its O.C. and A.S.N. functions, construct S.P.R. test for testing $H_0: \theta = \theta_0$ against $H_1: \theta = \theta_1$ (0<\theta_0\theta_1) on the basis of a random sample drawn from Pareto distribution with density function.

$$f(x, \theta) = \frac{\theta a^{\theta}}{x^{\theta+1}}, x \ge a.$$

Also obtain its O.C. and A.S.N. functions.

91/2

Section II

4. Discuss the method of construction of likelihood ratio test and state its important properties. Consider n Bernoullian trials with probability of success p for each trial. Derive the likelihood ratio test for testing $H_0: p = p_0$ against $H_1: p > p_0$.

91/2

- 5. (a) Describe Mann-Whitney-Wilcoxon test. How is the test carried out when
 - (i) there are ties;
 - (ii) sample sizes are large?
 - (b) Let $x_1, x_2, ..., x_n$ be the observed values of n random variables $X_1, X_2, ..., X_n$. Develop a test for the hypothesis that the random variables are *i.i.d.*

51/2,4

6. (a) Name a nonparametric test which is alternative to the one-way analysis of variance for testing that K independent samples are drawn from different populations. Describe its method and function in detail. (b) Develop the Bayesian method for testing the point null hypothesis $H_0: \theta = \theta_0$ against $H_1: \theta \neq \theta_0$ and show that Bayes factor is given by:

$$B = \frac{p(x/\theta_0)}{p_1(x)}, \cdot$$

Where $p(\underline{x})$ = predictive density of the vector $\underline{x} = (x_1, x_2, ...x_3)$ and p_1 , (\underline{x}) = predictive density under the alternative hypothesis. Further show that, if t = t (\underline{x}) is sufficient for \underline{x} given θ , Bayes factor is

B =
$$\frac{p(t \mid \theta_0)}{p_1(t)}$$
. 5½, 4