[This question paper contains 4 printed pages.]

Your Roll No.

1058

B.Sc. (Hons.) / III

Ċ

STATISTICS - Paper XXI

C-223: (Linear Models)

(Admissions of 1999 and onwards)

Time: 2 Hours Maximum Marks: 38

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt Four questions in all, - selecting two questions from each Section.

SECTION 1

(a) Suppose x_1 , y_2 , z_3 , i=1,2...n are 3n independent observations with common variance σ^2 and expectation given by $E(x_1) = \theta_1$, $E(y_1) = \theta_2$, and $E(z_1) = \theta_1 - \theta_2$, i=1,2...n. Find the BLUEs of θ_1 , θ_2 and compute the residual sum of squares. Also find blue of $\theta_1 + \theta_2$ and its variance.

- (b) Consider the simple linear regression model $Y = \beta + \beta \ x + \epsilon$ with usual assumptions. Obtain unbiased point estimator and interval estimator of the mean response for a particular value of the regressor variable. (6.31/2)
- 2. (a) Let Y'AY be Quadratic Form in y_1, \dots, y_n where $y_i \sim N(0.1)$, $i=1,\dots,n$. Prove that A is an idempotent matrix of rank k if Y'AY is distributed as χ^2 with kdf.
 - (b) If $Y \sim N_p(\mu, \Sigma)$. Obtain the distribution of $(Y \mu)' \sum_{i=1}^{r-1} (Y \mu).$
 - (c) Let $Y \sim N_3(0, \Sigma)$ where

$$\sum = \begin{bmatrix} 4 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 3 \end{bmatrix}$$

If
$$A = \begin{bmatrix} 1 & -3 & -8 \end{bmatrix}$$

 $\begin{bmatrix} 1 & -3 & 2 & -6 \end{bmatrix}$ Find expected value of $\begin{bmatrix} -8 & -6 & 3 \end{bmatrix}$
Y'AY. $(4\frac{1}{2}, 2\frac{1}{2}, 2\frac{1}{2})$

3. What are the basic differences between fixed effect model and random effect model? Derive the analysis

of variance of two way classified data with m observations per cell under random effect model.

 $(9\frac{1}{2})$

SECTION II

- 4. (a) Write short notes on:
 - (i) Estimable Functions
 - (ii) Orthogonal Columns in X matrix
 - (iii) Coefficient of determination
 - (b) Suppose we postulate the model $E(y) = \beta_1 x$ but the true model is $E(y) = \beta_0 + \beta_1 x$. Obtain the bias in estimate of β_1 . (6,3½)
- (a) Define polynomial regression models. Explain the role of orthogonal polynomials in fitting polynomial models in one variable.
 - (b) Consider the multiple linear regression model.
 "Which specific regressors seem important?"
 How will you address this question? (4,5½)
- 6. (a) Consider the model $Y=X\beta+\epsilon$ where $E(Y)=X\beta$, $CoV(Y)=\sigma^2I$ and X is $n \times p$ of rank $k . Obtain an unbiased estimator of <math>\sigma^2$.

(b) Consider the model $E(y_{ij}) = a_i + b_j$, i = 1,2; j = 1,2 with usual assumptions. Obtain the BLUE of $a_1 + b_1$. (4,5½)