6069

Your Roll No.....

B.Sc. (Hons.)/III

В

STATISTICS - Paper XXVI

BIOSTATISTICS

(Admissions of 1999 and onwards)

Time: 2 Hours

Maximum Marks: 38

(Write your Roll No. on the top immediately on receipt of this question paper.)

Answer four questions in all, selecting two questions from each Section.

SECTION I

 (a) Define Hazard function, survival function and death density function.

> Obtain survival function and death density function for both bath tub type survival model and Weibull survival model.

- (b) Define net probability of type A $(q_{1\delta})$ and establish the relation between $q_{1\delta}$ and crude probability $(Q_{1\delta})$. (6½,3)
- 2. (a) What is censoring? Describe Type II censoring scheme.

P.T.O.

(b) Assuming that each patient has death density function:

$$f(t) = \lambda \exp(-\lambda t), \ \lambda > 0, \ t \ge 0$$

and maximum likelihood estimator of mean longevity $\mu = \frac{1}{\lambda}$ based on type II censoring scheme is given by

$$\hat{\mu} \frac{Y}{d} = \frac{\sum_{i=1}^{d-1} t_{(i)} + (n-d+1)t_{(d)}}{d},$$

where $t_{(1)} \le t_{(2)} - \cdots \le t_{(d)}$. Obtain the distribution of Y. Hence obtain mean and variance of $\hat{\mu}$. Show that $\hat{\mu}$ attains Cramer Rao lower bound for variance. $(2,7\frac{1}{2})$

- 3. (a) Stating the assumptions explicitly, derive the logistic curve for population projection.
 - (b) Discuss method of three selected points for fitting logistic curve. (31/2,6)

SECTION II

4. (a) Define simple stochastic epidemic model. Obtain the probability of n susceptibles at time t i.e. $p_n(t)$.

- (b) What is duration of an epidemic? For simple stochastic epidemic model, obtain the expression for rth cumulant of the duration of an epidemic. (5,4%)
- 5. (a) Define crude probability due to risk $R_{\delta}(Q_{i\delta})$. Obtain the expression of $Q_{i\delta}$ stating the assumptions clearly.
 - (b) What is genotype and phenotype? What are different types of phenotypic expressions of a heterozygote with respect to a single loci.

 $(6,3\frac{1}{2})$

- 6. (a) Let A and B be two linked loci, each with two alleles. Let γ₁ = AB, γ₂ = Ab, γ₃ = aB and γ₄ = ab be four gametes with probabilities gᵢ = P(γ₁) ∀ i = 1, 2, 3, 4 respectively. Obtain the segregation matrices C₁, C₂, C₃ and C₄ for the gametes γ₁, γ₂, γ₃ and γ₄ respectively.
 - (b) Describe Mendel's laws of heredily by giving example of crossing of two traits. Also, obtain the probabilities of dominant and recessive traits in second generation. (4,5½)