[This question paper contains 4 printed pages.]

2035

Your Roll No.

B.Sc. (Hons.) / III

 \mathbf{E}

STATISTICS - Paper XIX

(Statistical Inference - I)

(Admissions of 1999 and onwards)

Time: 2 Hours

Maximum Marks: 38

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt four questions in all selecting two from each Section.

SECTION I

(a) Define a consistent and unbiased estimator.
Suppose X has a truncated Poisson distribution with probability mass function:

$$f(x;\theta) = \frac{\exp(-\theta)\theta^{*}}{\left[1 - \exp(-\theta)\right]x!} \qquad x = 1, 2, 3. \dots$$

Obtain an unbiased estimator of [1- $\exp(-\theta)$] based on X.

- (b) State and prove invariance property of consistent estimators. Using this property obtain consistent estimator of $\theta^2 + \theta \sqrt{\theta}$, when X follows Bernoulli distribution with parameter θ . (4.5½)
- 2. (a) Let T be an MVU estimator for $\gamma(\theta)$ and T_1 and T_2 be two other unbiased estimators of $\gamma(\theta)$, with efficiencies e_1 and e_2 respectively. If p_0 is the correlation coefficient between T_1 and T_2 then show that:

$$\left(e_1e_2\right)^{1/2} - \left\{\left(1-e_1\right)\left(1-e_2\right)\right\}^{1/2} \leq \rho_0 \leq \left(e_1e_2\right)^{1/2} + \left\{\left(1-e_1\right)\left(1-e_2\right)\right\}^{1/2}$$

(b) Given
$$f(x,\theta) = \frac{1}{\theta}$$
, $0 < x < \theta$, $\theta > 0$

compute the reciprocal of n $E\left\{\left[\frac{\partial \log f(x,\theta)}{\partial \theta}\right]^2\right\}$ and compare this with the variance of $(n+1)Y_n/n$, where Y_n is the largest observation of a random sample of size n from this distribution. Comment on the result. (5,4½)

(a) X has a binomial distribution of index n and parameter θ and the prior probability density function of θ is U[0, 1]. Obtain Bayes estimate and Bayes risk if loss function is L(θ,a) = (θ-a)².

(b) Describe the procedure of obtaining estimates by the method of minimum Chi-square. $(4\frac{1}{2},5)$

SECTION 11

3

- 4. (a) State and prove Fisher Neyman criterion for the existence of a sufficient statistic.
 - (b) X₁, X₂ is a random sample of size 2 from a distribution having probability density function

$$f(x,\theta) = \frac{1}{\theta} e^{-x/\theta}, \qquad 0 < x < \infty,$$

Show that $Y_1 = X_1 + X_2$ is sufficient for 0 and find the joint probability density function of Y_1 and $Y_2 = X_2$.

Also show that Y_2 is unbiased for θ with variance θ^2 . Find $E(Y_2|y_1) = \phi(y_1)$ and compare the variances of $\phi(y_1)$ and Y_2 . (5½,4)

5 (a) Prove that under regularity conditions, with probability approaching unity as n tends to infinity,

likelihood equation $\frac{\partial \log L}{\partial \theta} = 0$, has a solution which converges in probability to the true value θ_0 .

(b) If $X_1, X_2, ----, X_n$ is a random sample from the distribution:

$$f(x,\theta) = \frac{\theta^{k+1}x^k e^{-\theta x}}{\Gamma(k+1)}; \quad x > 0, \, \theta > 0$$

where k is a known constant, show that the maximum likelihood estimator $\hat{0}$ of 0 is $\frac{k+1}{\bar{x}}$. Also show that the estimator is biased but consistent and that its asymptotic distribution for

large n is
$$N\left(\theta, \frac{\theta^2}{n(k+1)}\right)$$
. (5½.4)

- 6. (a) Explain the difference between point estimation and interval estimation. Obtain 100(1-α)% confidence interval for the population correlation coefficient when the random sample of size n has been drawn from a bivariate normal population.
 - (b) Describe the method of moments.

Estimate α and β by the method of moments for the distribution :

$$f(x,\alpha,\beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x}, \quad 0 \le x < \infty$$
 (5½.4)