[This question paper contains 4 printed pages.]

2036

Your Roll No.

B.Sc. (Hons.) / III

E

STATISTICS - Paper XX

(Statistical Inference II)

(Admissions of 1999 and onwards)

Time: 2 Hours Maximum Marks: 38

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt any FOUR questions by selecting TWO from each Section.

SECTION - I

- 1. (a) Define the following:
 - (i) Critical region
 - (ii) Composite hypothesis
 - (iii) Size of the test
 - (b) Let p be the probability of appearance of a head in a single toss of a coin in order to test.

 $H_0: p = \frac{1}{2}$ against $H_1: p = \frac{3}{4}$, the coin is tossed 5 times. H_0 is rejected if more than 3 heads are obtained. Find the probability of type I error and power of the test. (4½,5)

- 2. (a) Given a random sample X_1 , X_2 , X_3 , X_n from the distribution with probability density function
 - $f(x,\theta) = \theta e^{-\theta x}$, x > 0, obtain UMP critical region for testing $H_0: \theta = \theta_0$ against $H_1: \theta < \theta_0$.
 - (b) Let X₁, X₂, X_n be a random sample from discrete distribution with probability function f(x) for which x takes non-negative integral values 0, 1, 2, ...

According to
$$H_0$$
: $f(x) = \begin{cases} \frac{e^{-1}}{x!}; & x = 0,1,2,...\\ 0, & \text{otherwise} \end{cases}$

According to
$$H_1$$
: $f(x) = \begin{cases} \frac{1}{2^{x+1}}; & x = 0,1,2,...\\ 0, & \text{otherwise} \end{cases}$

Obtain the MP critical region of size α for testing H_0 against H_1 . Hence obtain the power of the test for the case n = 1 and k = 1, where k is the constant such that the size of the critical region is α . (4½,5)

3. Describe likelihood-ratio Test. Mention its properties. Construct likelihood ratio test for testing the equality of means of two normal populations having common unknown variance. (9½)

SECTION - II

- 4. (a) Develop SPRT for testing $H_0: \theta = \theta_0$ against $H_1: \theta = \theta_1 \ (> \theta_0)$ where θ is the parameter of Poisson distribution. Also obtain its OC and ASN functions.
 - (b) Discuss Kolmogorov-Smirnov one sample test. (5,4½)
- (a) If SPRT of strength (α, β) terminates with probability one then determine the boundary points A and B.
 - (b) Develop Wald-Wolfowitz run test for the two sample problem. (4½,5)
- 6. (a) Define Bayes factor. Let X₁, X₂, X_n be random sample from f(x; θ), where θ is unknown. Obtain Bayes factor for testing:
 - (i) Simple H₀ against simple H₁,
 - (ii) Composite H₀ against composite H₁.

(b) Let X_1 , X_2 , X_n be random sample from $N(\theta, \emptyset)$, \emptyset being known. If θ follows $N(\theta_0, \psi)$, calculate Bayes factor B in favour of testing H_0 : $\theta = \theta_0$ against H_1 : $\theta \neq \theta_0$. (5,4½)