[This question paper contains 4 printed pages.]

2037

Your Roll No.

B.Sc. (Hons.) / III

E

STATISTICS - Paper XXI

(Linear Models)

(Admissions of 1999 and onwards)

Time: 2 Hours Maximum Marks: 38

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt FOUR questions in all selecting TWO from each Section.

SECTION I

1. (a) Consider the simple linear regression model $Y = \beta_0 + \beta_1 x + \epsilon \text{ with } E(\epsilon) = 0, \ V(\epsilon) = \sigma^2.$ Show that

(i)
$$COV(\hat{\beta}_0, \hat{\beta}_1) = -\overline{x} \frac{\sigma^2}{S_{xx}}$$

(ii)
$$COV(\overline{Y}, \hat{\beta}_1) = 0$$

(iii)
$$E(MSR) = \sigma^2 + \beta_1^2 S_{xx}$$

- (b) Consider the simple linear regression model $Y = \beta_0 + \beta_1 x + \epsilon$ with usual assumptions. Obtain unbiased point estimator and confidence interval for the mean response for a particular value of the regressor variable. (5,4%)
- 2. Let Y'AY be quadratic form in $Y_1, Y_2, ... Y_n$ where $Y_i \sim N(0, 1)$, i=1....n. Prove that A is an idempotent matrix of rank k if and only if Y'AY is distributed as χ^2 with k d f. (9½)
- 3. Derive the analysis of covariance for a one way layout with one concomitant variable only. (9½)

SECTION II

- 4. (a) What do you mean by bias in regression estimate? Suppose the postulated model is $E(y) = \beta_0 + \beta_1 x$ but the true model is actually $E(y) = \beta_0 + \beta_1 x + \beta_1 x^2$, what biases are induced in the least squares estimators of β_0 and β_1 by taking the observations at x = -2, -1, 0, 1, 2?
 - (b) Describe the general linear model and discuss the special cases arising there from. (5½,4)

- (a) Write a note on the extra sum of squares method that can be used to test the hypotheses about any subset of regressor variables.
 - (b) Four objects A, B, C, D are involved in a weighing experiment. Put together they weighted Y₁ grams. When A & C are put in the left pan of the balance and B & D are put in the right pan, a weight of Y₂ grams were necessary in the right pan for the balance. With A & B in the left pan and C & D in the right pan, Y₃ gram was needed in the right pan. Finally, with A & D in the left pan and B & C in the right pan, Y₄ gram was needed in the right pan. If the observations Y₁, Y₂, Y₃, Y₄ are all subject to uncorrelated errors with common variance σ²⁻, obtain the BLUE of the total weight of the four objects and its variance. (5½,4)
 - 6. (a) Write short notes on:
 - (i) Multiple linear regression models
 - (ii) No-intercept models
 - (iii) Coefficient of determination

(b) What is a parametric function? Derive a necessary and sufficient condition for which parametric function is estimable. (5½,4)