[This question paper contains 6 printed pages.]

2039

Your Roll No.

B.Sc. (Hons.) / III

E

STATISTICS - Paper XXIII

(Operational Research)

(Admissions of 1999 and onwards)

Time: 2 Hours Maximum Marks: 38

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt any FOUR questions selecting TWO from each Section.

Use of simple calculator is allowed.

SECTION I

1. (a) Solve the following L.P.P.:

Max. $Z = 8x_2$

subject to constraints

$$x_1 - x_2 \ge 0,$$

$$2x_1 + 3x_2 \le -6$$

 x_1, x_2 are unrestricted.

P.T.O.

(b) Solve the following L.P.P. using principle of duality.

Max.
$$Z = 6x_1 + 8x_2$$
,
subject to constraints
 $30x_1 + 20x_2 \le 300$,
 $5x_1 + 10x_2 \le 110$,
 $x_1, x_2 \ge 0$. (4½,5)

2. (a) Solve the following N.L.P.P.

Min
$$Z = 2x_1 + 3x_2 - x_1^2 - 2x_2^2$$

subject to the constraints
 $x_1 + 3x_2 \le 6$,
 $5x_1 + 2x_2 \le 10$,
 $x_1, x_2 \ge 0$.

- (b) The demand for a particular item is 18,000 units per year. The holding cost per unit is ₹ 1.20 per year and the cost of procurement is ₹ 400/-. Shortages are not allowed and the replacement rate is instantaneous. Determine:
 - (i) Optimum order quantity
 - (ii) Number of orders per year

- (iii) Time between orders and
- (iv) Total cost per year when the cost of one unit is ₹ 1/-. (4½,5)
- 3. (a) Solve the following assignment problem:

			Man		
		1	2	3	4
	1	18	30	21	15
Work	11	18	33	. 9	31
	Ш	44	25 .	24	21
	IV	23	30	28	14

(b) Compute the shortest distance from node 1 to node 5: (4½,5)

SECTION II

4. (a) A confectioner sells confectionery items. Past data of demand per week (in hundred Kg.) with frequency is given below:

Using the following sequence of random numbers, generate the demand for the next 10 weeks.

Also find the average demand per week.

(b) A company is spending ₹ 1000/- on transportation of its units from three plants to four distribution centres. The supply and demand of units, with unit cost of transportation are given below:

		Distribution Centre				Availability
	,	D_1	D ₂	D_3	D_4	
Plant	P1	19	30	50	12	7
	P2	70	30	40	60	10
	Р3	40	30 30 10	60	20	18
Requirement		5	8	7	15	-

What can be the maximum saving by optimal scheduling? (4½,5)

5. (a) Solve the game graphically whose pay off matrix is given below:

		В				
		I	II	_		
A	I	2	4			
	II	2	3			
	III	3	2			
	IV	-2	6			

- (b) A bulb manufacturing company has a contract to supply 5000 bulbs to an automobile factory per day. The company has capacity to manufacture 8,000 bulbs and holding cost of 1000 bulbs is 8 paise. Set up cost is ₹ 20. What would be the frequency of production run? (4½,5)
- 6. Write short notes on the following:
 - (i) Inventory control models

(ii) Quadratic Programming

(iii) Concept of duality

(3,3,31/2)