[This question paper contains 3 printed pages.]

2042

Your Roll No.

B.Sc. (Hons.) / III

 \mathbf{E}

STATISTICS - Paper XXVI

BIOSTATISTICS

(Admissions of 1999 and onwards)

Time: 2 Hours Maximum Marks: 38

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt four questions in all, selecting two from each Section.

SECTION I

(a) Define hazard function h(·), survival function s(·)
and death density function f(·). Establish

$$h(t) = \frac{f(t)}{s(t)}.$$

(b) Discuss bath-tub type survival model and obtain its survival function and death density function. (5, 4½)

- 2. (a) Define net probability of type $B(q_i.\delta)$ and establish the relation between $q_{i.\delta}$ and crude probability due to risk $R_{\delta}(Q_{i\delta})$. Prove the inequality $q_{i.\delta} < Q_{i\delta}$.
 - (b) Discuss the method of partial sums to fit Makeham's graduation formula. What is the use of this formula? (5,4½)
- (a) Discuss the Pearl and Reed's method to fit logistic curve.
 - (b) What is censoring? Differentiate between type I and type II censoring scheme. (6½,3)

SECTION II

- (a) Define simple stochastic epidemic model. Obtain the probability of n susceptibles at time t, i.e., p_n(t), when the initial population comprises of n susceptibles and 1 infective.
 - (b) What is duration of an epidemic? For simple stochastic model, obtain the expression for r-th cumulant of the duration of an epidemic.

 $(5,4\frac{1}{2})$

- 10. (a) Obtain the maximum likelihood estimator of mean longevity $\mu = \frac{1}{\lambda}$ based on progressive type I censored sample of n patients assuming that each patient has death density function $f(t) = \lambda e^{-\lambda t}$, $\lambda > 0$, $t \ge 0$.
 - (b) Describe Mendel's laws of heredity by giving example of crossing of two traits. (6,3½)
- 6. Let A and B be two linked loci, each with two alleles. Let $\gamma_1 = AB$, $\gamma_2 = Ab$, $\gamma_3 = aB$ and $\gamma_4 = ab$ be four gametes with probabilities $g_i = P(\gamma_i)$ for all i = 1,2,3,4 respectively. Obtain the segregation matrices C_1 , C_2 , C_3 and C_4 for the gametes γ_1 , γ_2 , γ_3 and γ_4 respectively. Hence obtain the distribution of genotypes in the n-th generation under random mating. (9½)