4402

Your Roll No.

Subsidiary for B.Sc. Honours/I

AS

PHYSICS - Paper II

(Thermal Physics)

Time: 3 Hours

Maximum Marks: 50

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt any Five questions.

All questions carry equal marks.

- Describe the principle, construction and working of a thermo-electric thermometer. State its advantages.
 - (8,2)
- 2. Define the coefficient of thermal conductivity of a solid. Describe Lee's method of determining the thermal conductivity of a bad conductor. Deduce the relevant formula. Why the specimen must have a small thickness and large surface area? (1,5,2,2)
- 3. Discuss Maxwell-Boltzmann law of distribution of velocities of gas molecules. Describe a method for its experimental verification. Obtain an expression for the most probable speed. Show plot of Maxwell-Boltzmann distribution law of velocities at two different temperatures. (2,5,2,1)

- 4. (a) Distinguish between isothermal and adiabatic processes.
 - (b) Prove that adiabatic elasticity of a gas is $\gamma = (C_p/C_v)$ times the isothermal elasticity.
 - (c) Calculate the work done when 1 gm mole of an ideal gas expands isothermally at 27°C to double its original volume.

$$R = 8.3 \text{ J/mole/deg.}$$
 (2,4,4)

- 5. (a) State Kelvin-Planck and Clausius statements of second law of thermodynamics. (2)
 - (b) State and prove Carnot's theorem. (5)
 - (c) A Carnot's engine works within the temperatures 100°C and 0°C. If the work done in a cycle is 12000 Joules, find the (i) efficiency and (ii) amount of heat in calories extracted from the source.

(1,2)

- 6. (a) Deduce an expression for the effect of pressure on the melting point of a solid. What is the effect of increase of pressure on the melting point of a solid which contracts on melting? (5,2)
 - (b) Calculate the pressure required to make ice freeze at −1°C.

 $L = 79.6 \times 4.2 \times 10^7 \text{ ergs/gm}$

Specific volume of water at $0^{\circ}C = 1.00c.c.$

Specific volume of ice at 0°C = 1.091c.c.

One atmosphere = $1.013 \times 10^6 \text{ dynes/cm}^2$ (3)

- 7. (a) What is a black body? What are the characteristics of a black body radiation? (1,3)
 - (b) Define solar constant. Give an experimental method to determine solar constant. (1,5)
- 8. Write short notes on any two of the following:
 - (a) Joule-Thomson Effect
 - (b) Absolute scale of temperature
 - (c) Carnot's Cycle

(5,5)