[This question paper contains 4 printed pages.]

5112

Your Roll No.

Subsidiary for B.Sc. Honours/II

J

MATHEMATICS - Paper IV (i)

(Mechanics)

Time: 3 Hours

Maximum Marks: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt any six questions.

All questions carry equal marks.

Symbols used have their usual meanings.

- (a) A particle of mass m at rest at t = 0 is subject to a force F(t) = F₀ Sin²wt. (a) Sketch the form you expect for v(t) and x(t), for several periods of oscillation fo the force. (b) Find v(t) and x(t) and compare with your sketch. (6)
 - (b) A boat is slowed by a frictional force F(v). Its velocity decreases according to the formula

$$v = C(t - t_1)^2$$

where C is a constant and t_1 is the time at which it stops. Find the force F(v). (6½)

2. (a) A particle of mass m is subject to a force

$$F = -kx + \frac{kx^3}{a^2}$$

where k, a are constants. Find V(x) and discuss the kinds of motion which can occure. (6½)

- (b) A projectile is fired vertically upward with an initial velocity v_0 . Find its motion, assuming a frictional drag proportional to the square of velocity. (6)
- 3. (a) Discuss the types of motion that can occure for a central force $F(r) = -\frac{K}{r^2} + \frac{K^1}{r^3}$. Assume that K > 0, and consider both signs for K^1 . (6½)
 - (b) A particle is projected vertically upward with a velocity 4. Find its velocity at any height h. (6)
- 4. (a) A particle of mass m moves according to the eqns.

$$x = x_0 + at^2$$
, $y = bt^3$, $z = ct$.

Find the angular momentum L at any time t. Find the force F and from it the torque N acting on the particle. (61/2)

(b) Find the r- and θ - components of $\frac{da}{dt}$ in plane polar co-ordinates, where 'a' is the acceleration of a particle. (6)

- (a) Calculate the energy loss Q for a headon collision between a particle of mass m₁, velocity v₁, with a particle of mass m₂ at rest, if the coefficient of restitution is e.
 - (b) A particle of mass m_1 , momentum p_1 , collides with a particle of mass m_2 at rest. A reaction occures from which two particles of masses m_3 and m_4 results, which leave the collision at angles θ_3 and θ_4 with the original path of m_1 . Find the energy Q produced in the reaction in terms of the masses, the angles and p_1 . (6½)
 - 6. (a) The balance wheel of a watch consists of a ring of mass M, radius a with spokes of negligible mass. The hairspring exerts a restoring torque $N_z = -k\theta$. Find the motion if the balance wheel is rotated through an angle θ_0 and released.

 $(6\frac{1}{2})$

- (b) Find the centre of mass of a wire bent in to a semicircle of radius a. (6)
- (a) Find the formula for radius of gyration of a uniform rod of length l about an axis through one end making an angle α with the rod.
 (6)
 - (b) A cable 20ft. long is suspended between two points A and B, 15ft. apart. The line AB makes an angle

of 30° with the horizonal (B higher). A weight of 2000 lb is hung from a point C 8ft. from the end of the cable at A. Find the position of point C, and the tensions in the cable, if the cable does not stretch.

(6½)

- 8 (a) A mass αM is located at x = a, y = 0 and a second mass (1-α)M is located at x = 0, y = b, where 0 < α < 1. Find the co-ordinates x, y of the centre of gravity of the two masses relative to the origin. Show that formulas for x, y have the proper limits when α → 0 or b → ∞.
 (6½)
 - (b) Use Kepler's third law to show that the forces on the planents are proportional to their masses.

(6)

- (a) Find the boundary condition and the normal modes of vibration of a streched string of length l terminated at the end x = h by a ring of negligible mass which slides without friction on a verticle rod.
 - (b) A long stretched string of tension τ and density σ_1 is tied at x=0 to a string of density σ_2 . If the mass of the knot is negligible, show that u and $\partial u/\partial x$ must be same on both sides of the knot.

 $(6\frac{1}{2})$