This question paper contain	ns 4 printed pages	Roll No.		· 1 1 1 1	
C. No. of Overtion Person	9554 A	Kuli Nu.			
	8554A				
Unique Paper Code :	216/223/589			C .	
Name of the Paper :	GGHT-501 : Ge	netics and Gen	omics-I		
Name of the Course :	B.Sc. (Hons.) And	th./Bot./Bio-Ch	em./Bio-Mec	l./Microbiology	/Zoology
Semester :	v				
Duration: 3 Hours				Maximum I	Marks : 75
(Write your Roll	No. on the top imn	nediately on rec	eipt óf this qu	uestion paper.)	
Attempt Five que	estions in all includ	ding Question I	No. 1 which	is compulsory.	
1. (A) Define any five:	: :				5
(i) Proband			•		
(ii) Hemizygous	· ;				
(iii) Frameshift r	nutation				
(iv) Homologou	s chromosomes				
(v) Pleiotropy		•			
(vi) Monosomy					
	eviations (any <i>four</i>) :			4
(i) QTL					
(ii) 2-AP	V.,			.•	
(iii) HGPRT					
					P.T.O.

	(iv)	SRY	
	(v)	C1B	
(C)	Giv	e important contributions of any five of the following	5
	(i)	Sutton and Boveri	
	(ii)	R.C. Punnett	
	(iii)	T.H. Morgan	
	(iv)	Boris Ephrussi	
	(v)	Carl Correns	
	(vi)	Karl Landsteiner	
(D)	Fill	in the blanks (any five):	5
	(i)	The phenomenon in which a red-flowered snapdragon and a white-flowered	:d
		snapdragon produce only pink-flowered offspring is called	
	(ii)	Alleles of different genes that are on the same chromosome may occasionally b	e
		separated by a phenomenon known as	
•	(iii)	An alkaloid used to arrest mitotically dividing cells in metaphase is	
	(iv)	Convention to indicate identical twins in a pedigree	
	(v)	Karyotype of Klinefelter's syndrome	
	(vi)	Cytological condition in which chromosomes fail to separate at the time of cell division	n
		is called	

2. Differentiate between any four of the following:

14

- (i) Penetrance and expressivity
- (ii) Euploidy and aneuploidy
- (iii) Epistasis and dominance
- (iv) Gynandromorphs and intersex
- (v) Reciprocal cross and test cross
- 3. In *D. melanogaster*, cherub wings (*ch*), black body (*b*), and cinnabar eyes (*cn*) result from recessive alleles that are all located on chromosome 2. A homozygous wild-type fly was mated with a cherub, black, and cinnabar fly, and the resulting F1 females were test-crossed with cherub, black, and cinnabar males. The following progeny were produced from the testcross:

$ch b^+cn$	105
$ch^+b^+cn^+$	750
ch ⁺ b cn	40
ch^+ b^+cn	4
ch b cn	753
$ch^{\circ}b^{+}cn^{+}$	41
ch^+b cn^+	102.
ch b cn ⁺	5

(a) How do you say the genes are linked?

2

(b) Determine the linear order of the genes on the chromosome.

3

(c) Construct the chromosomal map.

6

(d) Determine the coefficient of coincidence and interference.

3

4	١,
	•

8554A

4	(a)	Give an account of chromosomal mutation involving changes in number of g	genes	and
		position of genes.		10
	(b)	Explain briefly how visible mutations are detected by attached X method.		. 4
5.	(a)	Describe the mechanism of sex determination in humans. Explain how is it diffe	rent f	rom
		that in Drosophila?		10
	(b)	Add a note on environmental factors affecting sex determination.		4
6.	(a)	How do you calculate the number of polygenes ? Add a note on trans	sgres	sive
	•	variation.		7
	(b)	A pure sinistral female snail is crossed with a pure dextral male snail. Give the ap	peara	ınce
		of F1 with reasons. Give the phenotype of F2.		7
7.	Wri	te short notes on any four:		14
	(i)	Bombay phenotype		
	(ii)	Cytological evidence of crossing over	٠.	
	(iii)	Dosage compensation		
	(iv)	Null hypothesis		
	(v)	Somatic cell hybridization		
	(vi)	Lethal genes.		