[This question paper contains 4 printed pages.]

433

Your Roll No.

Concurrent Course for B.A. (Hons.) Prog. E MATHEMATICAL AWARENESS

Interdisciplinary

Time: 2 Hours

Maximum Marks: 50

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt all questions as per directed questionnaire.

- 1. Do any two parts:
 - (a) Write a brief introduction to the life and information on the works of either Euclid or Ramanujan. (4)
 - (b) Answer in one or two words.
 - (i) What was the topic of Noether's dissertation.
 - (ii) Why did Riemann adopt the analytical approach?
 - (iii) Name the book of Newton published in 1687.

- (iv) Who said these works 'there is no royal and to geometry'. (4)
- (c) State whether the following statement are true or false.
 - (i) Euclid proved that the fifth Fermat number cannot be factorized.
 - (ii) Emmy Noether's main contribution was in the field of graph theory.
 - (iii) Riemann died in 1986.
 - (iv) Ramanujan was born on Christmas Day. (4)

2. Do any three parts:

- (a) What is a perfect number? Give Euclid's formula of perfect number. Is 28 a perfect number? Show it. (5)
- (b) In how many ways can the starting order be posted in an eight member relay cross country skiing team if
 - (i) all eight members will take part in a race.
 - (ii) Only four members chosen from the eight members will take part. (5)

(c)	(i)	Define algebraic and transcendental	numbers.
		Are algebraic and transcendental	numbers
	:	irrational, rational or both.	(3)

- (ii) Define Fermat and Mersenne numbers. Give examples. (2)
- (d) (i) Find the least integer remainder of (4789 3264 9867)/7 (2)
 - (ii) State the Euclidean Algorithm. Using the above algorithm find greatest common divisor of 6237 and 2520. (3)

3. Do any three parts:

- (a) Make a comparative study of the following:
 - (i) Mobius Strip and Klein Bottle.
 - (ii) Euler Path and Hamilton Path. (5)
- (b) Explain Konigsberg bridge problem and how it led to the discovery of Euler's formula. (5)
- (c) State Four Colour Map Theorem. What is a chromatic number? Give chromatic number for a plane and Klein Bottle. (5)

(d) Find graphically the maximum, minimum and inflection point of the function.

$$f(x) = \sin x, x \in [0,2 \Pi].$$
 (5)

- 4. Do any three parts:
 - (a) In a moderately symmetrical distribution, the mode and mean are 32.1 and 35.4 respectively. Find the value of median. (4)
 - (b) State the addition theorem of probability. A bag contains 8 white and 4 red balls. Five balls are drawn at random. What is the probability that 2 of them are red and 3 white?

 (4)
 - (c) Use graphical method to solve the LP problem:

$$Max Z = 3x + 5y$$

subject to

$$5x + y \ge 10$$

$$x + y \ge 6$$

$$x + 4y \ge 12$$

$$x, y \ge 0$$

Also indicate the feasible region.

(d) Explain the meaning of skewness. What are the objectives of measuring it? (4)

(100

(4)