This question paper contains 23 printed pages.]

Your Roll No.

6323

B.A. (Hons.)/1

B

ECONOMICS: Paper 03 (Statistical Methods in Economics) (Admission of 2005 onwards)

Time: 2 Hours

Maximum Marks: 38

(Write your Roll No. on the top immediately on receipt of this question paper.)

Note: Answers may be written either in English or in Hindi; but the same medium should be used throughout the paper.

टिप्पणी: इस प्रश्न-पत्र का उत्तर अंग्रेज़ी या हिन्दी किसी एक भाषा में दीजिए; लेकिन सभी उत्तरों का माध्यम एक ही होना चाहिए।

Attempt aff questions.

Use of simple calculator is allowed.

सभी प्रश्नों के उत्तर दीजिए । साधारण कैलकुलेटर का उपयोग किया जा सकता है ।

- 1. (a) Twenty one persons in a room have an average height of 5 feet 6 inches. A 22nd person enters the room. How tall would he have to be to raise the average height of all 22 persons by one inch?
 - (b) Comment on the validity of the following statement:

"The standard deviation of heights measured in inches will be 12 times more than the standard deviation of heights measured in feet for the same group of individuals".

(c) Explain the meaning of negative and positive skewness.

- (क) एक कमरे में रह रहे 21 व्यक्तियों की ओसत लंबाई 5 फुट 6 इंच है । बाइसवाँ व्यक्ति इस कमरे में और आ जता है । 22 व्यक्तियों की औसत लंबाई को 1 इंच बढ़ाने के लिए उस व्यक्ति को कितना लंबा होना चाहिए ?
- (ख) निम्निलिखित कथन की वैधता पर टिप्पणी कीजिए : इंचों में मापी गई लंबाइयों का मानक विचलन, इसी समूह के व्यक्तियों की फुटों में मापी गई लंबाइयों के मानक विचलन से 12 गुना अधिक होगा ।
- (ग) ऋगात्मक और धनात्मक वैषम्य का अर्थ समझाइए । OR/अथवा
- (a) (i) The Governor of Delhi proposes to give all state employees a flat raise of ₹ 250 a month;

 What would this do to the average monthly salary of state employees to the standard deviation?
 - (ii). What would a 50% increase in the salaries, across the board, do to the average monthly salary to the standard deviation?

3

2

11/3

- (b) An investigator has a computer file slowing family incomes for 1,000 subjects in a certain study. These range from ₹ 5,800 a year to ₹ 98,600 a year. By accident, the highest income in the file gets changed to ₹ 9,86,000.
 - (i) Does this affect the average and if so by how much?
 - (ii) Does this affect the median? If so, by how much? Why?
- (क) (i) दिल्ली का गवर्नर सभी सरकारी कर्मचारियों को ₹ 250 प्रतिमास की समान बढ़ोत्तरी देने का प्रस्ताव रखता है । सरकारी कर्मचारियों के औसत मासिक वेतन का मानक विचलन पर क्या प्रभाव पढ़ेगा ?
 - (ii) वेतनों में 50% की सपाट वृद्धि से औसत मासिक वेतन के मानक विचलन पर क्या प्रभाव पड़ेगा ?
- (ख) जाँच करने वाले के पास एक कम्प्यूटर फाइल है जिसमें अध्ययन किए गए 1000 कर्मचारियों के परिवारों की आयों का विवरण है । ये आय ₹ 5,800 प्रति वर्ष से ₹ 98,600 प्रति वर्ष तक हैं । दुर्घटनावश फाइल में उच्चतम आय बदल कर ₹ 9,86,000 हो गई ।
 - (i) क्या इससे औसत पर प्रभाव पड़ेगा और यदि पड़ेगा तो कितना ?
 - (ii) क्या इससे माध्यिका पर प्रभाव पड़ेगा ? यदि हाँ तो कितना और क्यों ?
- 2. (a) In a bivariate distribution, if the two regression lines coincide what can you say about the coefficient of correlation between the two variables? Explain.

(b) The following table gives the ages of husbands and wives for 50 newly married couples. Find the two regression lines and estimate the age of the husband when age of the wife is 20 and the age of the wife when the age of the husband is 30. Also calculate the coefficient of correlation.

Age of	Age of Husbands			Total
Wives	20-25	25-30	30-35	
16-20	9	14	0	23
20-24	6	11,	3	20
24-28	0	0	7	07
Total	15	25	10	50

(c) The annual trend equation for production of rice (in hundred kg) for three states I, II and III are given below:

State I: $y_t = 400 + 0.012t$

State II : $y_t = 200 (1.012)^t$

State III: $y_1 = 290 (0.978)^t$

- (i) Find the level of production for all three states in the year of origin.
- (ii) Comment on the pattern of change of production overtime for each of the three states.

3

- (क) एक द्विचर वितरण में यदि दो समाश्रयण लाइनें संपाती हैं तो दो परिवर्त्यों के बीच सहसंबंध गुणांक के बारे में आप क्या बता सकते हैं ? व्याख्या कीजिए ।
- (ख) निम्नलिखित तालिका 50 नव विवाहित युग्मों के पतियों और पित्नयों की आयु प्रदर्शित करती है। दो समाश्रयण लाइनों को ज्ञात कीजिए और पित की आयु का आकलन कीजिए जब उसकी पत्नी की आयु 20 है और पत्नी की आयु ज्ञात कीजिए जब पित की आयु 30 है। साथ ही सहसंबंध गुणांक का परिकलन कीजिए।

पत्नी	पति की आयु		जोड़	
की आयु	20-25	25-30	30-35	
16-20	9	14	0	23
20-24	6	11	3	20
24-28	0	0	7	07
जोड़	15	25	10	50

(ग) धान के उत्पादन के लिए (100 kg) में I, II और III राज्यों की वार्षिक प्रवृत्ति समीकरण नीचे दी गई है :

राज्य $I: y_t = 400 + 0.012t$

राज्य II : y_t = 200 (1.012)^t

राज्य III : y_t = 290 (0.978)^t

- (i) आरंभिक वर्ष में सभी तीन राज्यों में उत्पादन का स्तर ज्ञात कीजिए ।
- (ii) इन तीनों राज्यों में से प्रत्येक के लिए उत्पादन समयोपिर के परिवर्तन पैटर्न पर टिप्पणी कीजिए ।

OR/अथवा

- (a) Prove that the arithmetic mean of the two regression coefficients (b_{yx} and b_{xy}) is in general greater than the coefficient of correlation (r_{xy}) between the two variables. Can the coefficient of correlation ever be equal to the arithmetic mean of the two regression coefficients?
- (b) A researcher in his study of family resemblances found the following information:

Average height of fathers = 68 inches Average height of sons = 69 inches Standard deviation of fathers' heights = 2.7 inches

Standard deviation of sons' heights = 2.7 inches

Coefficient of correlation = 0.5

- (i) Find the regression equation for predicting the height of a son from the height of father.
- (ii) Find the regression equation for predicting the height of a father from the height of his son.
- (iii) Why do we require two equations to make the predictions in part (i) and (ii)?
- (iv) If information regarding the heights of fathers and heights of sons is plotted on a graph, does the scatter diagram slope up or down? Why?
- (v) Determine the change in son's height, if father's height changes by one inche.

3

(c) The two regression lines obtained from certain data were:

$$y = x + 5 \text{ and}$$
$$16x = 9y - 94$$

Given that the variance of y = 16

- (i) Find standard deviation of x.
- (ii) Covariance between x and y.
- (iii) Standard error of estimate in the regression of y on x and in the regression of x on y.
- (iv) Predict the value of x if given the value of y is 20.
- (क) सिद्ध कीजिए कि दो समाश्रयण गुणांकों (b_{yx} और b_{xy}) का गणितीय माध्य, सामान्यतः दो परिवर्त्यों के बीच सहसंबंध गुणांक (r_{xy}) से अधिक होता है । क्या सहसंबंध गुणांक कभी भी दो समाश्रयण गुणांकों के गणितीय माध्य के बराबर हो सकता है ?
- (ख) एक अन्वेषक ने परिवार के लोगों में समानताओं के अपने अध्ययन में निम्निलिखित सूचनाएँ प्राप्त की:
 पिता की औसत लंबाई = 68 इंच
 पुत्रों की औसत लंबाई = 69 इंच
 पिता की लंबाइयों का मानक विचलन = 2.7 इंच
 पुत्रों की लंबाइयों का मानक विचलन = 2.7 इंच
 सहसंबंध गुणांक = 0.5
 - (i) पिता की लंबाई से पुत्र की लंबाई का पूर्वानुमान करने के लिए समाश्रयण समीकरण ज्ञात कीजिए ।

- (ii) पुत्र की लंबाई से पिता की लंबाई का पूर्वानुमान करने के लिये समाश्रयण समीकरण ज्ञात कीजिए ।
- (iii) ऊपर (i) और (ii) में पूर्वानुमान करने के लिए दो समीकरणों की आवश्यकता क्यों होती है ?
- (iv) यिद पिताओं की लंबाइयों और पुत्रों की लंबाइयों के बारे में सूचनाओं को ग्राफ में प्लॉट किया जाए तो क्या स्कैटर आरेख ऊपर की ओर ढलाव वाला होगा या नीचे की ओर ढ़लाव वाला ? क्यों ?
- (v) यदि पिता की लंबाई में एक इंच का परिवर्तन हो जाए तो पुत्र की लंबाई में परिवर्तन का निर्धारण कीजिए ।
- (ग) विशेष आँकड़ों से प्राप्त दो समाश्रयण लाइनें ये थीं :

$$y = x + 5$$
 और $16x = 9y - 94$

दिया गया है कि v का प्रसरण = 16

- (i) x का मानक विचलन ज्ञात कीजिए 1
- (ii) x और y के बीच सहप्रसरण ।
- (iii) x पर y के समाश्रयण और y पर x के समाश्रयण में आकलन की मानक त्रृटि
- (iv) यदि y का मान 20 दिया गया है तो x के मान का पूर्वानुमान कीजिए ।
- 3. (a) The typing speed on a new type of keyboard for people at a certain stage in their training programme is approximately normally distributed. The probability that the speed of a given trainee will be greater than 65 words per minute is 0.45. The probability that speed will be more than 70 words per minute is 0.15. Find the mean and standard deviation of the typing speed.

- (b) The engines on an airline operate independently. The probability that individual engine operates for a given trip is 0.95. A plane will be able to complete a trip successfully if atleast half of its engine for the entire trip. Determine. whether a 4-engine or a 2-engine airoplane has the higher probability of a successful trip.
- (c) A doctor has decided to prescribe two new drugs, A and B, to 200 heart patients as follows:

50 patients get A

50 " get B and

100 get both A and B.

The 200 patients were chosen so that each had an 80% chance of having a heart attack if given neither of the two drugs. Drug A reduces the probability of a heart attack by 35%, B reduces the probability of a heart attack by 20% and the two drugs taken together work independently. If a randomly selected patient in a programme has a heart attack, what is the probability that the patient was given both the drugs?

(क) लोगों के नए प्रकार के की-बोर्डों पर, उनके प्रशिक्षण कार्यक्रम में टाइपिंग की रफ्तार सिन्नकटत: प्रसामान्य रूप में वितरित होती है । इसकी प्रायिकता, कि बताए गए प्रशिक्षणार्थी की टाइपिंग की रफ्तार 65 शब्द प्रति मिनट से अधिक है, 0.45 है । इसकी प्रायिकता, कि चाल 70 शब्द प्रति मिनट से अधिक होगी, 0.15 है । टाइपिंग की रफ्तार का माध्य और मानक विचलन ज्ञात कीजिए ।

- (ख) हवाई जहाज़ के इंजन स्वतंत्र रूप में प्रचालन करते हैं। दी गई ट्रिप पर एकल इंजिन की प्रचालन प्रायिकता 0.95 है। हवाई जहाज़ ट्रिप को सफलतापूर्वक पूरा कर लेगा यदि कम से कम उसके आधे इंजन संपूर्ण ट्रिप के लिए प्रचालन करें। निर्धारित कीजिए कि 4 इंजन वाले जहाज की या 2 इंजनवाले जहाज की ट्रिप को सफलता पूर्वक करने की प्रायिकता उच्च है।
- (ग) एक डॉक्टर ने निम्निलिखित रूप में 200 हृदय रोगियों को
 A और B दो नई औषधियाँ देने का निश्चय किया :

50 रोगियों को A औषधि

50 रोगियों को B औषधि

100 रोगियों को A और B दोनों औषधियाँ

200 रोगियों को इसिलए चुना गया था कि जिससे प्रत्येक को दोनों औषिथों में से किसी न किसी को न देने पर 80% हृदय-धात की संभावना थी । औषिध A हृदयधात को कम करने की प्रायिकता 35% है, B औषिध की हृदयधात को कम करने की प्रायिकता 20% है और एक साथ दोनों औषिथाँ लेने पर वे स्वतंत्र रूप से कार्य करती हैं । यदि इस कार्यक्रम में यादृच्छिक रूप से चुने गए रोगी को हृदयधात हो जाता है तो इसकी प्रायिकता क्या है कि रोगी को दोनों औषिथाँ दी गई थीं?

OR/अथवा

(a) An analyst develops the following:

Table of joint probabilities relating to the size of firm (measured in terms of number

of employees) and type of firm.

	Industry			
Number of employees	Construction	Manufacturing	Retail	
Under 20	0.2307	0.0993	0.5009	
20-99	0.0189	0.0347	0.0876	
100 or more	0.0019	0.0147	0.0113	

If a firm is selected at random, find the probability of the following events:

- (i) the firm employs fewer than 20 employees.
- (ii) the firm is in the retail industry.
- (iii) a firm in the construction industry employs between 20 and 99 workers.
- (iv) a firm in the retail industry employs less than 20 workers.
- An economist finds that during periods of (b) high economic growth, the Indian rupee appreciates with probability 0.70; in periods of moderate economic growth, the rupee appreciates with probability 0.40: and in periods of low economic growth, the rupee appreciates with probability 0.20. During any period of time, the probability of high economic growth is 0.30, the probability of moderate growth is 0.50 and probability of low economic growth is 0.20. Suppose the rupee has been appreciating during the present period. What is the probability that the country is experiencing a period of moderate economic growth?

- (c) Find the mean and standard deviation of each of the following binomial random variables.
 - (i) No. of aces seen in 100 draws from a pack of cards (with replacement)
 - (ii) No. of melon seeds that germinates when a pack of 50 seeds is planted. The pack states that the probability of germination is 0.88.

(क) एक विश्लेषक फर्म के आकार (कर्मचारियों की संख्या की माप के आधार पर) और फर्म की किस्म से संबंधित संयुक्त प्रायिकताओं की निम्नलिखित तालिका विकिसत करता है:

	उद्योग		
कर्मचारियों की संख्या	रचना	निर्माण	खुदरा
20 से कम	0.2307	0.0993	0.5009
20 से 99	0.0189	0.0347	0.0876
100 या इससे अधिक	0.0019	0.0147	0.0113

यदि एक फर्म को यादृच्छिक रूप में चुना जाए तो निम्नलिखित घटनाओं की प्रायिकता ज्ञात कीजिए :

- (i) फर्म 20 से कम कर्मचारियों को नियुक्त करती है
- (ii) फर्म खुदरा उद्योग की है ।
- (iii) रचना उद्योग में लगी फर्म 20 से 99 कर्मचारियों को नियुक्त करती है ।
- (iv) फर्म खुदरा उद्योग की है और 20 से कम कर्मचारियों को नियुक्त करती है।

- (ख) एक अर्थशास्त्री पता लगाता है कि उच्च आर्थिक वृद्धि के कालों में भारतीय रुपया 0.70 प्रायिकता के साथ बढ़ता है, मध्यम आर्थिक वृद्धि के कालों में 0.40 प्रायिकता के साथ बढ़ता है और निम्न आर्थिक वृद्धि के कालों में रुपया 0.20 प्रायिकता के साथ बढ़ता है । किसी भी अविध में उच्च आर्थिक वृद्धि की प्रायिकता 0.30 है । मध्यम वृद्धि की प्रायिकता 0.50 है और निम्न वृद्धि की प्रायिकता 0.20 है । मान लीजिए कि वर्तमान अविध में रुपया बढ़ रहा है । इसकी प्रायिकता क्या है कि देश मध्यम आर्थिक वृद्धि के काल का अनुभव कर रहा है ?
- (ग) निम्नलिखित द्विपद यादृच्छिक चरों में से प्रत्येक का माध्य और मानक विचलन ज्ञात कीजिए :
 - ताश की गड्डी से खींचे गए 100.ताशों में इक्कों की संख्या (प्रतिस्थापना के साथ)
 - (ii) पैकिट के 50 बीजों को बोने पर तरबूज के अंकुरित होने वाले बीजों की संख्या के आधार पर पैकिट की अंकुरण प्रायिकता 0.88 है ।
- 4. (a) Differentiate between one-tailed and two-tailed tests. Give examples:
 - (b) A radio shop sells, on an average, 200 radios per day with a standard deviation of 50 radios. After an extensive advertising campaign, the management will compute the average sales for the next 25 days to see whether an improvement has occurred. Assume that the daily sales of radios is normally distributed.
 - (i) Write down the null and appropriate alternate hypothesis:

- (ii) Test the hypothesis at 5% level of significance if the average sales are 216 radios.
- (iii) How large must the average be in order that the null hypothesis is reflected at 5% lend of significance?

4

(c) In a certain town, there are about one million eligible voters. A simple random sample of size 10,000 was chosen to study the relationship between sex and participation in the last election. The results are as follows:

	Men	Women
Voted	2,792	3,591
Didn't vote	1,486	2,131

Using 5% level of significance, test for the independences of sex and voting. Would your conclusion differ, if 1% level of significance is used for the test.

- (क) एक सपुच्छ और दो सपुच्छ परीक्षणों में अंतर बताइए । उदाहरण दीजिए ।
- (ख) रेडियो की एक दुकान औसतन 200 रेडियो प्रति दिन, 50 रेडियो के मानक विचलन के साथ बेचती है। विस्तृत विज्ञापन अभियान के पश्चात प्रबंध अगले 25 दिन की औस्त बिक्री को कम्प्यूट करेगा यह देखने के लिए कि सुधार हुआ है या नहीं। मान लीजिए कि रेडियों की दैनिक बिक्री सामान्यत: वितरित है:
 - (i) निराकरणीय और उपयुक्त वैकल्पिक परिकल्पना को लिखिए ।

- (ii) सार्थकता के 5% स्तर पर परिकल्पना की जाँच कीजिए यदि औसत बिक्री 216 रेडियो की है।
- (iii) सार्थकता के 5% स्तर पर निराकरणीय परिकल्पना का परावर्तन के लिए औसत कितना बड़ा होना चाहिए !
- (ग) एक करबे में लगभग 10 लाख योग्य वोटर हैं । 10000 के आकार के एक सरल यादृच्छिक सैम्पल को यह अध्ययन करने के लिए चुना गया कि पिछले चुनाव में पुरुष और महिलाओं का संबंध और उनकी हिस्सेदारी क्या है ? परिणाम इस प्रकार हैं :

	पुरुष	महिलाएँ
वोट दिया	2,792	3,591
वोट नहीं दिया	1,486	2,131

सार्थकता के 5% स्तर का प्रयोग करके लैंगिक स्वतंत्रता और वोटिंग के लिए परीक्षण कीजिए । क्या आपके निष्कर्ष में अंतर हो जाएगा यदि परीक्षण के लिए 1% के सार्थकता स्तर का प्रयोग किया जाए ।

OR/अथवा

- (a) Explain two properties of a good estimator.
- (b) There are two brands of car types A and B in the market. A sample of 100 tyres of brand A has an average life of 37,500kms with a standard deviation of 2,500 Kms. Another sample of 75 tyres of brand B has an average life of 39,000 Kms with a standard deviation of 3,000 Kms. Can it be concluded that brand B is better than brand A. Use 1% level of significance.

4

(c) The following table shows the number of road accidents in a city, that occurred during various days of a week.

Days	No. of accidents
Sunday	14
Monday	16
Tuesday	· 8
Wednesday	12
Thursday	11
Friday	9
Saturday	14

Determine with the accidents are uniformly distributed over different days of the week (Use 1% level of significance)

- (क) अच्छे प्राक्कलक की दो विशेषताओं की व्याख्या कीजिए।
- (ख) A और B किस्म की कार के दो ब्रांड बाज़ार में हैं। ब्रांड A के 100 टायरों के सैम्पल का औसत जीवन 2,500 ms मानक विचलन के साथ 33,500 kms है। ब्रांड B के 75 टायरों के दूसरे सैम्पल का औसत जीवन 3,000 kms मानक विचलन के साथ 39,000 kms है। क्या इससे यह निष्कर्ष निकाला जा सकता है कि ब्रांड B, ब्रांड A से बहतर है? सार्थकता के 1% स्तर का प्रयोग कीजिए।

 (ग) निम्निलिखित तालिका शहर में हुई सड़क दुर्घटनाओं की संख्या को प्रदर्शित करती है जो सप्ताह के विभिन्न दिनों में हुए हैं।

दिन	दुर्घटनाओं की संख्या
रविवार	14
सोमवार	16
मंगलवार	. 8
बुधवार	12
बृहस्पतिवार	11 ·
शुक्रवार	9
शनिवार	14

निर्धारित कीजिए कि दुर्घटनाएँ सप्ताह के विभिन्न दिनों में एक समान रूप में वितरित हैं (सार्थकता के 1% स्तर का प्रयोग कीजिए) ।

5. (a) Compute Fisher's Quantity Index Number from the data given below:

	2009		2010	
Commodity		Total Value (₹)	Price (₹/Unit)	Totaļ Value (₹)
A	5	50	4	48
В	8	48	7	49
C	6	18	5 .	20

(b) Construct the index number by the Chain Base Method based on the following data of wholesale prices of a certain commodity.

Year	Price
2001	37 ·
2002	39
2003	43
2004	48
2005	. 52
2006	49
2007	54
2008	56

2

(क) नीचे दिए गए आँकड़ों से फिशर मात्रात्मक सूचकांक को कम्प्यट कीजिए :

	2009		20	10
वस्तु	कीमत	कुल मूल्य	कीमत	कुल मूल्य
	(₹/यूनिट)	(₹)	(₹/यूनिट)	(₹)
A	5	50	4	48
В	8	48	7	49
	6	18	5	20

(ख) खास वस्तु की होलसेल कीमतों के निम्नलिखित आँकड़ों पर आधारित शृंखला आधार विधि द्वारा सूचकांक की रचना कीजिए ।

वर्ष	कीमत
2001	37
2002	39
2003	43
2004	48
2005	52
2006	49
2007	54
2008	56

OR/अथवा

(a) Given the following data:

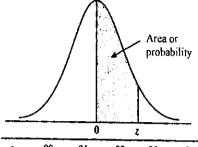
Year	Weekly Money wages (in rupees)	Consumer Price Index No			
2004	109.50	112.8			
2005	112.20	118.2			
2006	116.40	127.4			
2007	125.08	138.2			
2008	135.40	143.5			
2009	138.10	149.8			

- (i) Find out the real average weekly wage for each year.
- (ii) In which year did the employees have the greatest buying power?
- (iii) What percentage increase (if any) in the weekly wages for the year 2009 is required to provide the same buying power that the employees enjoyed in the year in which they had the highest real wages?

(b) Using the following two index number series, splice the series B to A.

Year	Series A	Series B
2005	100	
2006	120	
2007	150	100
2008		110
2009		120
2010		150
2011		170

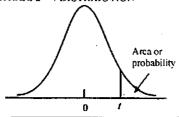
1


(क) निम्नलिखित ऑंकड़े दिए गए हैं :

वर्ष	साप्ताहिक मुद्रा मज़दूरियाँ	उपभोक्ता कीमत		
	(₹)	सूचकाक		
2004	109.50	112.8		
2005	112.20	118.2		
2006	116.40	127.4		
2007	125.08	138.2		
2008	135.40	143.5		
2009	138.10	149.8		

- (i) प्रत्येक वर्ष के लिए वास्तविक औसत साप्ताहिक मज़दूरी ज्ञात कीजिए ।
- (ii) किस वर्ष में कर्मचारियों की क्रय शक्ति सबसे अधिक थी ?
- (iii) वर्ष 2009 के लिए साप्ताहिक मज़दूरियों में किस प्रतिशत वृद्धि (यदि है तो) की उसी क्रय शिक्त को प्रदान करने के लिए ज़रूरत होती है जो शिक्त कर्मचारियों में उस वर्ष में थी जिसमें वास्तविक मज़दूरियाँ उच्चतम थीं ?
- (ख) निम्नलिखित **दो** सूचकांक शृंखलाओं का प्रयोग करके शृंखला B को A में संबंधित कीजिए :

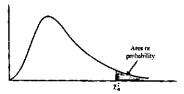
वर्ष	शृंखला A	शृंखला B
2005	100	
2006	120	
2007	150	100
2008		110
2009		120
2010		150
2011		170


TABLE 1 STANDARD NORMAL DISTRIBUTION

Entries in the table give the area under the curve between the mean and z standard deviations above the mean. For example, for z = 1.25 the area under the curve between the mean and z is 3.944

		U		Z						
ž	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
Ω	.0000	.0040	.0080	.0120	.0160	.0199	.0239	.0279	.0319	.0359
.1	.0398	.0438	.0478	.0517	.0557	.0596	.0636	.0675	.0714	.0753
.2	.0793	.0832	.0371	.0910	.0948	.0987	.1026	.1064	.1103	.1141
.3	.1179	.1217	.1255	.1293	.1331	.1368	.1406	.[443	.1480	.1517
.4	.1554	.1591	.1628	.1664	.1700	.1736	.1772	.1808	1844	.1879
.5	.1915	.1950	.1985	.2019	.2054	.2088 -	.2123	2157	.2190	.2224
.6	.2257	.2291	.2324	.2357	.2389	.2422	.2454	.2486	.2518	.2549
.7	.2580	2612	.2642	.2673	.2704	.2734	.2764	.2794	.2823	.2852
.8	.2881	.2910	.2939	.2967	.2995	.3023	.3051	.3078	.3106	.3133
.9	.3159	.3186	.3212	.3238	.3264	.3289	.3315	.3340	.3365	.3389
1.0	.3413	.3438	.3461	.3485	.3508	.3531	.3554	.3577	.3599	.3621
1.1	.3643	.3665	.3686	.3708	3729	3749	.3770	.3790	.3810	.3830
1.2	.3849	3869	.3888	.3907	.3925	3944	.3962	.3980	3997	.4015
1.3	.4032	.4049	.4066	.4082	4099	.4115	.4131	-4147	.4162	A177
1.4	.4192	.4207	.4222	.4236	.4251	4265	.4279	.4292	.4306	.4319
1.5	4332	.4345	.4357	.4370	.4382	.4394	.4406	.4418	.4429	.4441
1.6	.4452	.4463	.4474	.4484	.4495	.4505	.4515	.4525	.4535	4545
1.7	4554	.4564	.4573	4582	.4591	.4599	.4608	.4616	.4625	4633
1.8	.4641	.4649	.4656	.4664	.4671	.4678	.4686	.4693	.4699	4706
1.9	.4713	.4719	.4726	.4732	.4738	.4744	.4750	.4756	.4761	4767
2.0	.4772	.4778	.4783	.4788	.4793	.4798	.4803	.4808	.4812	.4817
2.1	.4821	.4826	.4830	.4834	.4838	.4842	.4846	.4350	.4854	.4857
2.2	4661	.4864	.4868	.4871	.4875	.4878	.4881	.4884	.4887	4890
2.3	.4893	.4896	.4898	.4901	.4904	.4906	.4909	.4911	.4913	.4916
2.4	.4918	4920	.4922	-4925	.4927	.4979	.4931	.4932	.4934	.4936
2.5	.4938	.4940	.4941	.4943	.4945	.4946	.4948	.4949	.4951	,4952
2.6	.4953	.4955	.4956	.4957	.4959	.4960	.4961	.4962	.4963	.4964
2,7	.4965	.4966	.4967	.496B	.4969	.4970	.4971	.4972	.4973	4974
2.8	.4974	.4975	.4976	.4977	.4977	.4978	.4979	.4979	.4980	4981
2.9	.4981	.4982	.4982	.4983	.4984	.4984	.4985	.4985	.4986	.4986
3.0	.4986	.4987	.4987	.4988	.4988	4989	.4989	.4989	.4990	.4990

FABLE 2 / DISTRIBUTION



Entries in the table give the t values fo an area or probability in the upper tail of the t distribution. For example, with 10 degrees of freedom and a .05 area in the upper tail, $t_{.05} = 1.812$.

Degrees	Area in Upper Tail							
of Freedom	.30	.05	.025	.025 .01				
ı	3.078	6.314	12.706	31.821	63,657			
2	1.886	2.920	4.303	6.965	9,925			
3	1.638	2.353	3.182	4.541	5.841			
4	1.533	2.132	2.776	3.747	4.604			
5	1.476	2.015	2.571	3.365	4.032			
6	1.440	1.943	2.447	3.143	3.707			
7	1.415	1.895	2.365	2.998	3,499			
8	1.397	1.860	2.306	2.896	3.355			
9	1.383	1.833	2.262	2.821	3.250			
10	1.372	1.812	2.228	2.764	3.169			
11	1.363	1.796	2.201	2.718	3.106			
12	1.356	1.782	2.179	2.681	3.055			
13	1.350	1.771	2.160	2.650	3.012			
14	1.345	1.761	2,145	2.624	2.977			
15	1.341	1.753	2.131	2.602	2.947			
16	1.337	1.746	2.120	2.583	2.921			
17	1.333	1.740	2.110	2.567	2.898			
18	1.330	1.734	2.101	2.552	2.878			
19	1.328	1.729	2.093	2.539	2.861			
20	1.325	1.725	2.086	2.528	2.845			
21	1.323	1.721	2.080	2.518	2,831			
22	1,321	1.717	2.074	2,508	2.819			
23	1.319	1.714	2.069	2.500	2.807			
24	1.318	1.711	2.064	2.492	2,797			
25	1.316	1.708	2.060	2.485	2,787			
26	1.315	1.706	2.056	2.479	2.779			
27	1.314	1.703	2.052	2.473	2.771			
28	1.313	1.701	2.048	2.467	2.763			
29	1.311	1.699	2.045	2.462	2.755			
30	£.310	1.697	2.042	2.457	2.750			
40	1.303	1.684	2.021	2,423	2.704			
60	1.296	1.671	2.000	2.390	2.660			
120	1.289	1.658	1.980	2.358	2.617			
90	1.282	1.645	1.960	2.326	2.576			

This table is reprinted by permission of Oxford University Press on behalf of The Biometrika Trassees from Table 12, Percentage Points of the 1 Distribution, by E. S. Peruson and H. O. Hartley, Biometrika Tables for Statisticians, Vol. 1, 3rd ed., 1966.

TABLE 3 CHI-SQUARE DISTRIBUTION

Entries in the table give χ_a^2 values, where α is the area or probability in the upper tail of the chi-square distribution. For example, with 10 degrees of freedom and a 01 area in the upper tail, $\chi_{ab}^2 \simeq 23\,2093$.

Degrees	Arm in Oppor Tail									
d Ironius	. 395	.59	<i>5</i> 75	#	.90	.11	М	AZS	M	J45
1	392,701 × 10 ⁻⁸	157,001 × 10 ⁻⁴	902,069 × 10 ⁻¹	393,214 × 10 ⁻⁴	.0157908	1,70554	3.84146	5.02389	6.63490	7,87944
2	.0190251	.0261007	.0506356	.102587	210720	4,60517	5,99147	7.37776	9.21834	18,3966
3	.0717212	.114132	215795	.151846	\$24375	6.25139	7,81473	9,34140	(1340)	12.8381
4	.206990	297110	.484419	.710721	1.063623	7.77944	9.41773	13.1433	13.2767	14.8682
5	.611740	\$\$4300	.13(21)	1.1454%	1.61031	9,23635	11,0705	12.8325	15.0063	16.7496
•	ศราชา	.872065	1.237347	1.61539	2.20413	10.6446	12.5916	14,4494	16.8119	18.5476
7	.989265	1.239043	1,61917	2.16735	283311	12.0170	14.0671	16.0128	19,4753	10.7177
1	1.34419	1.646442	2,17973	2.73264	14854	13,3616	15.5071	17.5346	20.0902	21.9550
9	1.734926	2.007912	2.70039	332511	4.162.16	14,6837	15.9190	19,0228	11.6660	23.5893
10	2.15 51 5	7.55821	1.24497	3.54030	4,86518	15.9871	18.3070	20.4131	23,2093	25.1882
11	2.60321	3.05347	3.81575	457481	5.57779	17,2750	19.6751	21,9200	24,7250	26.7369
12	3,07302	3,57056	4,40379	5.23603	6.30380	18.56%	21.0261	23,3367	26,2170	28,2995
13	3.56513	4.10691	5.00874	5.89186	7.01150	19.8119	22.3621	24.7356	27.6823	29,8194
74	4.07463	4.66063	5,62872	657063	7.71953	21.0642	23 6848	26.1190	29.1411	31.3193
15	4,60094	5.22935	636214	7.36094	1.54675	12.3072	24,9958	27.484	30,5779	12,1013
.16	5.14224	5.11221	6.90766	7.96164	9.31 223	23,5418	26.2962	28.8454	31,9999	34.2672
17	5,69724	6.40776	7.56118	0.67176	10.0032	24,7690	27.5871	30.1910	33,4087	35,7123
11	6.25481	7 81491	8,23075	9.39046	10.0647	25.9894	23.3693	31.5264	34,8053	37,1564
17	4.54394	1.63273	4.90655	10.1176	11,6509	27,2034	30.1435	32.6521	36.1900	JI. 5122
20	7,43386	1,36010	9.59083	19,8506	12.6436	25.4128	31,4104	34,1696	37.5462	39.9968
2)	4,63366	1.19720	10.28293	11.5913	13.23%	29,6151	32,4705	35,4789	31,9321	41,4916
22	8,64272	5500	19.9023	12,3340	14,6415	30.8133	33.9244	36,7807	40,2884	42,7958
23	9.26062	15.19567	11.6035	13.0905	142479	32,0069	35,1725	31.0757	().634	4111
24	9.88623	10.0564	12.4011	13.0484	15,6587	13,1963	36.4151	39,3641	12.9794	45.5525
25	10.5197	11.5340	13.1197	14.6114	16.4734	343816	37.6525	40,6465	443141	46,9278
×	11.1603	12.1961	13.8439	15,3791	17.2919	15.5631	34.8852	41,9232	45.6417	(1.259)
27	11.80%	12,8786	H.5733	16.1513	13.1136	36.7412	40.1133	43,1944	45.9630	49,649
28	12.4613	13.5646	LS.3079	16.9279	11.9392	37.9159	41.3372	44,4607	43.2782	50,9933
29	13.1211	14.2565	16.0171	17.7083	19.7677	39,0875	42.5569	45.7222	49.5879	\$2.3354
30	13.7147	14.9535	16.7908	13.4926	29.5992	40.2560	43,7729	46.9792	50,8922	53,6729
40	26.7065	22.16(3	24.4331	26.5093	29.0505	\$1,8050	55,7585	59,3417	63,6907	66.7659
50	27.9907	29.7067	12.3574	34,7642	37,6006	63.1671	67_5043	71,4202	76.1539	79.4900
60	35 5346	37,4545	40.4217	43.1879	46.4589	74.3970	79.0019	13.2976	\$\$,3794	91.5517
79	43,2752	45.4411	42,7576	51.7393	55,3290	15.5271	90,5312	95.0231	100.425	191,215
\$0	\$1,1720	55.5408	57.1532	60.3913	64.2778	96,5782	101,879	106.629	(12.329	116,321
90	\$9,1903	61.750	15.6466	69.1260	73.2912	107.565	113.145	118.136	124,116	128.299
100	67.3276	70.0641	74.2219	77,9295	\$2,3501	118.494	124.342	129,561	135,007	140,169

This table is reprinted by parallelian of Oxford University Press on behalf of The Riemersha Trustees from Table 8, Pursuange Points of the 3st Distribution, by E. S. Pearson and H. O. Harfley, Riemersha Tables for Darimicless, Vol. 1, 3rd ed., 1966.