[This question paper contains 10 printed pages.]

Sr. No. of Question Paper: 6003 G Your Roll No.....

Unique Paper Code : 227103

Name of the Paper : Mathematical Methods for Economics – I

Name of the Course : B.A. (Hons.) Economics

Semester : I

Duration: 3 Hours Maximum Marks: 75

Instructions for Candidates

1. Write your Roll No. on the top immediately on receipt of this question paper.

- 2. There are six questions in all.
- 3. All questions are compulsory.
- 4. Use of simple calculator is allowed.
- 5. All parts of a question should be answered together.
- 6. Answers may be written either in English or in Hindi; but the same medium should be used throughout the paper.

छात्रों के लिए निर्देश

- 1. इस प्रश्न-पत्र के मिलते ही ऊपर दिए गए निर्धारित स्थान पर अपना अनुक्रमांक लिखिए।
- 2. कुल छ: प्रश्न हैं।
- 3. सभी प्रश्न अनिवार्य हैं।
- 4. साधारण कैलक्यूलेटर का उपयोग किया जा सकता है।
- 5. प्रत्येक प्रश्न के सभी भागों को एक ही स्थान पर हल कीजिए।
- इस प्रश्न-पत्र का उत्तर अंग्रेजी या हिंदी किसी एक भाषा में दीजिए, लेकिन सभी उत्तरों का माध्यम एक ही होना चाहिए।

1. Answer any two of the following:

 $(2 \times 4 = 8)$

(a) (i) Solve for x when:

$$\frac{3x+2}{x-1} > 2 - x$$

(ii) Given sets A, B, C, prove or disprove:

$$(A\backslash B\cap C) = (A\backslash B) \cup (A\backslash C)$$

(b) (i) Find the domain of the function:

$$y = \log \left(\log \left(\frac{x}{x - 3} \right) \right)$$

- (ii) Is $x \ge -3$ a necessary condition for $2x + 6 \ge 4$?
- (c) (i) Draw the graph of $y = -(x-1)^{1/3}$ using the graph of $y = x^{1/3}$.

(ii) If
$$f(x) = \sqrt{\frac{x}{x-1}}$$
 and $g(x) = \frac{\sqrt{x}}{\sqrt{x-1}}$, is $f(x) = g(x)$? Why or why not?

निम्नलिखित में से किन्हीं दो के उत्तर दीजिए:

(क) (i) x के लिए हल कीजिए:

$$\frac{3x+2}{x-1} > 2 - x$$

(ii) दिए गए तीन समुच्चयों $A,\ B,\ C,\ \hat{e}_{\vec{q}}$ निम्नलिखित को सिद्ध कीजिए या गलत सिद्ध कीजिए :

$$(A\backslash B\cap C)=(A\backslash B)\cup(A\backslash C)$$

(ख) (i) निम्नलिखित फलन का परास (domain) ज्ञात कीजिए:

$$y = \log \left(\log \left(\frac{x}{x - 3} \right) \right)$$

- (ii) क्या $2x + 6 \ge 4$ के सत्य होने के लिए $x \ge -3$ एक आवश्यक शर्त है ?
- (ग) (i) $y = x^{1/3}$ के आरेख की सहायता से $y = -(x-1)^{1/3}$ का आरेख बनाइए ।
 - (ii) यदि $f(x) = \sqrt{\frac{x}{x-1}}$ एवं $g(x) = \frac{\sqrt{x}}{\sqrt{x-1}}$, तो क्या f(x) = g(x)? क्यों या क्यों नहीं ?
- 2. Answer any four of the following:
 - (a) (i) Let n be a positive integer. Show that there is a number c between 0 and x such that

$$\frac{(1+x)^n-1}{x} = n(1+c)^{n-1}$$

(ii) Use part (i) to evaluate

$$\lim_{x\to 0}\frac{\left(1+x\right)^n-1}{x}$$

- (b) Find the quadratic approximation of $f(x) = \ln(1 + x)$ around x = 0 and find the Lagrange bound on absolute error when $|x| \le 0.1$.
- (c) Perform test for convergence for the following:

(i)
$$\left\{ \left(-1\right)^n \frac{2n^3}{n^3+1} \right\}_{n=1}^{\infty}$$

(ii)
$$\sum_{n=1}^{\infty} \frac{4^{2n-1}}{3^{3n+1}}$$

 $(4 \times 4 = 16)$

4

(d) (i) Given $f(x) = \ln|g(x)|$, find f' in terms of g'.

(ii) Find
$$\lim_{x\to 1^+} \left(\frac{x^2}{x-1} - \frac{1}{\ln x} \right)$$

(e) Suppose f and g are differentiable functions of x. Express $El_x(f+g)$ in terms of $El_x(f)$ and $El_x(g)$ where El denotes elasticity.

निम्नलिखित में से किन्हीं चार के उत्तर दीजिए:

(क) (i) मान लीजिए n एक धनात्मकपूर्णांक है। दर्शाइए कि 0 और x के मध्य एक ऐसी संख्या c विद्यमान होती है कि :

$$\frac{(1+x)^n-1}{x} = n(1+c)^{n-1}$$

(ii) भाग (i) की सहायता से निम्निलिखित का मान ज्ञात कीजिए:

$$\lim_{x\to 0}\frac{\left(1+x\right)^n-1}{x}$$

- (ख) x=0 के पास $f(x)=\ln(1+x)$ का द्विघात सन्निकटन (quadratic approximation) ज्ञात कीजिए व यदि $|x|\leq 0.1$ हो तो सन्निकटन निरपेक्ष त्रुटि की लैग्रांज (Lagrange) सीमा भी ज्ञात कीजिए।
- (ग) निम्नलिखित का अभिसरण हेतु परीक्षण कीजिए:

(i)
$$\left\{ \left(-1\right)^n \frac{2n^3}{n^3 + 1} \right\}_{n=1}^{\infty}$$

(ii)
$$\sum_{n=1}^{\infty} \frac{4^{2n-1}}{3^{3n+1}}$$

6003

(घ) (i) g' के पदों में f' को ज्ञात कीजिए, यदि $f(x) = \ln|g(x)|$.

(ii)
$$\lim_{x\to 1^+} \left(\frac{x^2}{x-1} - \frac{1}{\ln x}\right)$$
 को ज्ञात कीजिए।

(ङ) मान लीजिए f व g, x के अवकलनीय फलन हैं । $El_x(f+g)$ को $El_x(f)$ व $El_x(g)$ के पदों में व्यक्त कीजिए जहाँ El लोच को निरूपित करता है ।

5

- 3. Answer any three of the following: $(3\times5=15)$
 - (a) For each of the following functions prove that the inverse exists:

(i)
$$f(x) = 3 + x + e^x$$

(ii)
$$g(x) = \ln(x + 3)$$

Find $(f^{-1})'$ at 4 and $(g^{-1})'$ at 0.

- (b) Find on the part of the rectangular hyperbola xy = 4 in positive quadrant the point which is nearest to the origin 0 and show that the shortest distance is perpendicular to the tangent at this point. What is the shortest distance?
- (c) (i) Find vertical and horizontal asymptote, if any, of the function

$$f(x) = \frac{3x-2}{(x+1)^2(x-2)}$$
.

(ii) Find 'a' and 'b' that will guarantee that the graph of $f(x) = \frac{ax+5}{3-bx}$ will have a vertical asymptote at x = 5 and horizontal asymptote at y = -3.

(d) If
$$f(x) = \begin{cases} -2x & \text{if } x < 1\\ \sqrt{x} - 3 & \text{if } x \ge 1 \end{cases}$$

Sketch the graph of f. Also, comment on the continuity and differentiability of the function f(x) at x = 1.

निम्नलिखित में से किन्हीं तीन के उत्तर दीजिए:

- (क) निम्नलिखित में से प्रत्येक फलन हेतु सिद्ध कीजिए कि प्रतिलोग फलन विद्यमान है:
 - (i) $f(x) = 3 + x + e^x$
 - (ii) $g(x) = \ln(x + 3)$

4 पर (f-1)' तथा 0 पर (g-1)' ज्ञात कीजिए।

- (ख) धनात्मक अतिपरवलय xy = 4 के धनात्मक चतुर्थांश में स्थित भाग पर वह बिन्दु ज्ञात कीजिए जो कि मूल बिन्दु 0 से निकटतम है तथा दर्शाइए कि यह न्यूनतम दूरी इस बिन्दु पर स्पर्शरेखा के लम्बवत् है। न्यूनतम दूरी क्या है?
- (ग) (i) फलन $f(x) = \frac{3x-2}{(x+1)^2(x-2)}$ के लिए ऊर्ध्वाधर व क्षैतिज अनन्तस्पर्शियाँ (vertical and horizontal asymptote) ज्ञात कीजिए, यदि कोई हों।
 - (ii) ज्ञात कीजिए 'a' और 'b' के वे मान जिनके अन्तर्गत $f(x) = \frac{ax+5}{3-bx}$ के आरेख का x=5 पर एक ऊर्ध्वाधर अनन्तस्पर्शी हो व y=-3 क्षैतिज अनन्तस्पर्शी हो ।

(घ) यदि
$$f(x) = \begin{cases} -2x & \text{if } x < 1\\ \sqrt{x} - 3 & \text{if } x \ge 1 \end{cases}$$

तो f के ग्राफ का अनुरेखण कीजिए । फलन f(x) की x=1 पर संततता व अवकलनीयता पर टिप्पणी भी कीजिए ।

4. Answer any three of the following:

 $(3 \times 5 = 15)$

- (a) How long will it take for a sum of money M₀ to double if it is invested at an annual rate of interest r100% compounded (i) quarterly and (ii) continuously.
- (b) Suppose you inherit a piece of land in a remote village whose market value in Rupees, t years from now is estimated to be $v(t) = 50,000 e^{\sqrt{t}}$. If the prevailing interest rate remains constant at 10% compounded continuously, when will it be most advantageous for you to sell the land?
- (c) Find the elasticity of y with respect to x for the function $y = x^a e^{-b(x+c)}$. Show that elasticity decreases with x if b > 0.
- (d) Find the intervals where the function $f(x) = x^2e^x$ is increasing and decreasing.

निम्नलिखित में से किन्हीं तीन के उत्तर दीजिए:

- (क) धन की राशि M_0 को दुगुना होने में कितना समय लगेगा यदि इसे ब्याज की वार्षिक दर r100% पर निवेशित किया जाए तथा इस पर चक्रवृद्धि ब्याज-निम्नानुसार मिले (i) त्रैमासिक (ii) सतत रूप से ।
- (ख) मान लीजिए कि आपको एक दूरवर्ती गाँव में एक भूखण्ड विरासत में मिला है, जिसका आकितत बाजार मूल्य आज से t वर्ष बाद $v(t)=50,000\,e^{\sqrt{t}}$ है । यदि प्रचिलत ब्याज दर 10% (वार्षिक चक्रवृद्धि के साथ) पर स्थिर रहती है, तो आपके लिए इस भूखण्ड को कब बेचना सर्वाधिक लाभकारी होगा ?
- (ग) फलन $y = x^a e^{-b(x+c)}$ हेतु y की x के सापेक्ष लोच ज्ञात कीजिए । दर्शाइए कि यदि b>0 तो यह लोच x में वृद्धि के साथ कम होती है ।
- (घ) वे अन्तराल ज्ञात कीजिए जहाँ फलन $f(x)=x^2e^{-x}$ वर्द्धमान (increasing) व हासमान (decreasing) है।

5. Answer any three of the following:

 $(3 \times 5 = 15)$

- (a) Find the absolute maximum and minimum values of $f(x) = 2x^3 15x^2 + 36$ on the interval [1, 5] and determine where these values occur.
- (b) Let f be defined for all x by $f(x) = (x^2 1)^{2/3}$
 - (i) Compute f'(x) and f''(x).
 - (ii) Find the local extreme points, points of inflection and cusp of f.
- (c) A quadratic profit function $\pi(x) = ax^2 + bx + c$, where x is output, is used to reflect the following assumptions:
 - (i) When x = 0, profits are negative.
 - (ii) The profit function is strictly concave.
 - (iii) The maximum profits occur at output level $x^* > 0$.

What restrictions need to be placed on values of the constants a, b and c in order to fulfil the above mentioned assumptions.

(d) Draw the graph and investigate the following functions for local extreme points.

(i)
$$f(x) = \begin{cases} -x; & x < 0 \\ x + 5; & x \ge 0 \end{cases}$$

(ii)
$$f(x) = \begin{cases} x^2 + 3; & x \neq 0 \\ 4; & x = 0 \end{cases}$$

निम्नलिखित में से किन्हीं तीन के उत्तर दीजिए:

(क) अन्तराल [1, 5] में $f(x) = 2x^3 - 15x^2 + 36$ के निरपेक्षत: उच्चतम व निम्नतम मान ज्ञात कीजिए, तथा ज्ञात कीजिए कि ये मान कहाँ प्राप्त होते हैं।

9

- (ख) मान लीजिए कि f सभी x हेतु $f(x) = (x^2 1)^{2/3}$ के द्वारा परिभाषित है।
 - (i) f'(x) व f''(x) ज्ञात कीजिए।
 - (ii) f के स्थानीय चरम बिन्दु, मोड़-बिन्दु (points of inflection) व दन्ताग्र-बिन्दु (cusp) ज्ञात कीजिए।
- (ग) एक द्विधातीय लाभ फलन $\pi(x) = ax^2 + bx + c$, जहाँ x उत्पाद है, को निम्नलिखित मान्यताओं को परिलक्षित करने हेतु उपयोग किया जाता है:
 - (i) जब x = 0 तो लाभ नकारात्मक (negative) है।
 - (ii) लाभ फलन सख्ततः अवतल है।
 - (iii) लाभ का अधिकतम स्तर उत्पाद के स्तर $x^*>0$ पर प्राप्त होता है। उपरोक्त मान्यताओं को सन्तुष्ट करने हेतु स्थिरांकों a, b and c के मानों पर क्या प्रतिबन्ध लगाए जाने चाहिए?
- (घ) निम्नलिखित फलनों के रेखाचित्र बनाइए व इन फलनों की स्थानीय चरम बिन्दुओं हेतु जाँच कीजिए:

(i)
$$f(x) = \begin{cases} -x; & x < 0 \\ x + 5; & x \ge 0 \end{cases}$$

(ii)
$$f(x) = \begin{cases} x^2 + 3; & x \neq 0 \\ 4; & x = 0 \end{cases}$$

6. Answer all the questions:

 $(2 \times 3 = 6)$

(a) Find the consumption function C(Y) when the marginal propensity to consume (MPC) function is given by:

MPC =
$$\frac{dC}{dY}$$
 = 0.4 + $\frac{0.1}{\sqrt{Y}}$ and C(Y = 100) = 50.

Evaluate the following:

(i)
$$\frac{d}{dt} \int_{-2t}^{t} \frac{1}{\sqrt{x^2 + 1}} dx$$

(ii)
$$\frac{d}{dx} \int_{2}^{\ln(x)} (t^{2/3} + 9) dt$$

(b) Solve the difference equation $x_t = -3x_{t-1} + 4$ and determine if the solution path is convergent or not.

निम्नलिखित में से सभी के उत्तर दीजिए:

(क) यदि उपभोग की सीमान्त उपयोगिता (MPC) फलन

$$MPC = \frac{dC}{dY} = 0.4 + \frac{0.1}{\sqrt{Y}}$$
 तथा $C(Y = 100) = 50$

हो तो उपभोग फलन C(Y) ज्ञात कीजिए।

OR

निम्नलिखित का मूल्यांकन कीजिए:

(i)
$$\frac{d}{dt} \int_{-2t}^{t} \frac{1}{\sqrt{x^2 + 1}} dx$$

(ii)
$$\frac{d}{dx} \int_{2}^{\ln(x)} (t^{2/3} + 9) dt$$

(ख) अंतर समीकरण $x_t = -3x_{t-1} + 4$ का हल ज्ञात कीजिए एवं निर्धारित कीजिए कि समय पथ अभिसारी (convergent) है अथवा नहीं।