[This question paper contains 3 printed pages.]

1465-Á

Your Roll No. ......

B.A./B.Sc. (Hons.)/II

A

MATHEMATICS - Unit VI

(Differential Equations - I)

(Admissions of 2008 and before)

Time: 2 Hours

Maximum Marks: 38

(Write your Roll No. on the top immediately on receipt of this question paper.)

All questions are compulsory.

## SECTION I

1. Solve any two of the following:

(a) 
$$(2x^3y^2+4x^2y+2xy^2+xy^4+2y)dx + 2(y^3+x^2y+x)dy = 0$$

(3)

(b) 
$$(px-y)(py+x) = h^2p$$
 (3)

(c) 
$$p^3 - (x^2 + xy + y^2)p^2 + (x^3y + x^2y^2 + xy^3)p - x^3y^3 = 0$$
(3)

2. In a certain decay problem, initially there is 'm' mg of the material present. After 2 years it is observed that 5 percent of the material has decayed. Find an expression for the mass present at any time t. Also find time taken for 10% of the original mass to decay.
(3)

P.T.O.

## SECTION II

3. Solve any two of the following:

(a) 
$$(D^2 - 4D + 4)y = 8x^2e^{2x}\sin 2x$$
, where  $D = \frac{d}{dx}$ . (3)

(b) 
$$(x^4D^4 + 6x^3D^3 + 9x^2D^2 + 3xD + 1)y = (1 + \log x)^2;$$
  
where  $D = \frac{d}{dx}$ . (3)

(c) 
$$4y^{(2)} - 4y^{(1)} + y = e^x + 2 \cos 2x$$

by the method of undetermined co-efficients.

(3)

4. Show that the Wronskian of two solutions of the differential equation

$$a_0(x)\frac{d^2y}{dx^2} + a_1(x)\frac{dy}{dx} + a_2(x)y = 0,$$

where  $a_0(x) \neq 0 \ \forall \ x$  and  $a_0(x)$ ,  $a_1(x) \& a_2(x)$  are its  $f^{ns}$  of x on [a, b]; is either identically zero or never zero on (a, b).

## SECTION III

5. Find power series solution of any two of the following:

(a) 
$$(2+x^2)y^{(2)} + xy^{(1)} - (1+x)y = 0$$
 about  $x_0 = 0$  (5)

(b) 
$$9x(1-x)y^{(2)} - 12y^{(1)} + 4y = 0$$
 about  $x_0 = 0$  (5)

(c) 
$$2x y^{(2)} + (x+1)y^{(1)} + 3y = 0$$
 about  $x_0 = 0$  (5)

## SECTION IV

6. Solve any two of the following:

(a)  $4x_1 + 9y_1 + 11x + 31y = e^t$ 

$$3x_1 + 7y_1 + 8x + 24y = e^{2t}$$
; where  
 $x_1 = \frac{dx}{dt}$   
 $y_1 = \frac{dy}{dt}$  (3)

(b) 
$$\frac{dx}{x^2 - yz} = \frac{dy}{y^2 - zx} = \frac{dz}{z^2 - xy}$$
 (3)

(c) 
$$z(z + y^2)dx + z(z + x^2)dy - xy(x + y)dz = 0$$
 (3)

7. Using Picard's method find upto three successive approximations, the solution of the differential equation

$$\frac{dy}{dx} = 2y - 2x^2 - 3$$

$$y(0) = 2$$
(3)