Se No. of Question Paper; 615

Unique Paper Code: 235483

Name of Course : B.A. (Hons.)

Name of Paper : Mathematics-I (Algebra & Calculus)

Other than Economics

Semester : IV

Duration: 3 hours Maximum Marks: 75

Instructions for Candidates:

Question No. 1 is compulsory and carries 15 marks. Attempt six more questions selecting at least two questions from each section. Each question carries 10 marks.

1. (i) If
$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
 and $B = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$, where $i^2 = -1$. Verify that $(A + B)^2 = A^2 + B^2$.

(ii) Evaluate
$$\lim_{x\to 1} \frac{\sqrt{x+5}-3}{(x-4)}$$
.

(iii) Find
$$\frac{dy}{dx}$$
, when $y = x^2 \log(3x + 7)$

(iv) Show that
$$\begin{vmatrix} y+z & x & y \\ z+x & z & x \\ x+y & y & z \end{vmatrix} = (x+y+z)(x-y)^2$$
.

(v) Evaluate $\int x^3 \sin(x^4 + 1) dx$

SECTION-I

2. (i) Find the inverse of the matrix $A = \begin{bmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{bmatrix}$ and verify that

 $A^{-1}A = I_3$ where I_3 is the identity matrix of order 3.

(ii) Solve the following system of equations by Cramer's rule:

$$x-4y-z=11$$
, $2x-5y+2z=39$, $-3x+2y+z=1$

- 3. (i) Find the equation of parabola, whose focus is (3, -4) and directrix is the line x + y 2 = 0.
 - (ii) If $A = \begin{bmatrix} 2 & 1 & 3 \\ 2 & 0 & 1 \\ -4 & 5 & 6 \end{bmatrix}$, verify that $A(\text{adj } A) = |A| I_3$, where I_3 is the identity matrix of order 3.
- 4. (i) Find the centre and radius of the following circle: $x^2 + y^2 + 2x + 17y + 4 = 0$
 - (ii) Find the co-ordinates of the foci, the vertices, the length of major and minor axes and the eccentricity of the ellipse $x^2 + 4y^2 = 16$. Also sketch the graph of the ellipse.

SECTION -II

- 5. (i) If $x^y = e^{x-y}$ show that $\frac{dy}{dx} = \frac{\log x}{(1 + \log x)^2}$.
 - (ii) Examine the continuity of the function

$$f(x) = \begin{cases} \frac{e^{\frac{1}{x}} - 1}{e^{\frac{1}{x}} + 1}, & \text{when } x \neq 0 \\ e^{\frac{1}{x}} + 1, & \text{when } x = 0. \end{cases}$$
 at $x = 0$.

- 6. (i) Find the relative maxima and minima of the function $f(x) = x^4 8x^3 + 22x^2 24x + 1.$
 - (ii) Determine the intervals of concavity and points of inflection of the curve $y = x^4 4x^3 18x^2 + 1$.
 - 7. (i) Verify Rolle's theorem for $f(x) = x^3 6x^2 + 11x 6$, in [1,3]...
 - (ii) Write down the Maclaurin series expansion for the function $f(x) = e^x$.

SECTION III

8. (i) Find the area of the region bounded by the curves $y=x^2$ and y=x.

(ii) Evaluate
$$\int \frac{x^3 - 5x}{(x^2 - 9)(x^2 + 1)} dx$$
.

9. (i) Find the general solution of the differential equation

$$(1+y)xy\frac{dy}{dx} = (1-x^2)(1-y)$$

- (ii) The marginal cost function of a firm is $MC = (\log x)^2$. Find the total cost function when the cost of producing one unit is Rs 20.
- 10. (i) Evaluate $\int_{0}^{\pi/2} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx$.
 - (ii) Test the convergence of the series $\sum_{n=1}^{\infty} \frac{1}{2^n}$