(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt any two parts from each question.

All questions carry equal marks.

- 1. (a) Prove that by an appropriate rearrangement of terms, a conditionally convergent series Σu_n can be made to converge to a preassigned number or can be made to diverge to ∞ .
 - (b) (i) Examine the convergence of the series :

$$\sum_{n=2}^{\infty} \frac{(n^3+1)^{1/3}-n}{\log n}.$$

(ii) Prove that:

$$\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(m+n^2)(m+n^2-1)} = \frac{\pi^2}{12}.$$

(c) Show that for |x| < 1

$$1 + \frac{8x}{1-x} + \frac{16x^2}{1+x^2} + \frac{24x^3}{1-x^3} + \dots$$

$$=1+\frac{8x}{(1-x)^2}+\frac{8x^2}{(1+x^2)^2}+\frac{8x^3}{(1-x^3)^2}+\dots$$

2. (a) Let a sequence $\langle f_n \rangle$ of functions converge uniformly to a function f on $1 \sim \{c\}$. For all $n \in \mathbb{N}$ let:

$$\mathbf{A}_{n} = \lim_{x \to c} f_{n}(x)$$

Then:

- (i) $\langle A_n \rangle$ converges
- (ii) $\lim_{x\to c} f(x) = \lim_{n\to\infty} A_n$

- (b) If a series $\sum f_n$ converges uniformly to a function f in [a, b] where each f_n is continuous in [a, b], then f is continuous in [a, b]. What can you say about f if the convergence is not uniform. Justify with an example.
- (c) Examine the uniform convergence of the following:

(i)
$$\sum_{n=1}^{\infty} \frac{1}{n^3 + n^4 x^2} \quad x \in \mathbb{R}$$

(ii)
$$\langle f_n(x) \rangle$$
 where $f_n(x) = \frac{n^2 x}{1 + n^3 x^2}$ on [0, 1].

3. (a) Expand in a series of sines and cosines of multiple angles of x, the periodic function f with period 2π defined as:

$$f(x) = \begin{cases} -1 & \text{for } -\pi < x < 0 \\ 1 & \text{for } 0 \le x \le \pi \end{cases}$$

Calculate the sum of the series at x = 0, $\pi/2$.

Give the statement of the result that you use:

$$\frac{\sin x}{\sqrt{1}} + \frac{\cos 2x}{\sqrt{2}} + \frac{\sin 3x}{\sqrt{3}} + \frac{\cos 4x}{\sqrt{4}} + \dots$$

(ii)
$$\frac{\cos x}{1^2} + \frac{\sin 2x}{2^2} + \frac{\cos 3x}{3^2} + \frac{\sin 4x}{4^{2\pi n}} + \dots$$

(c) If f is bounded and integrable in $[-\pi, \pi]$ and monotonic in $[-\delta, 0[$ and $]0, \delta]$ (not necessarily in the same sense) where $0 < \delta < \pi$ then

$$\frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n = \frac{f(0-) + f(0+)}{\pi} \int_{0}^{\infty} \frac{\sin x}{x} dx$$

Hence deduce the value of $\int_{0}^{\infty} \frac{\sin x}{4x_{\pm}} dx$

4. (a) Show that :

$$\sin^{-1} x = x + \frac{1}{x^2} \cdot \frac{x^3}{3_{10}} + \frac{1.3}{2!4} \cdot \frac{x^5}{5} + \frac{1.3.5}{2.4.6} \cdot \frac{x^7}{7} + \dots$$

 $-1 < x \le 1$ and deduce that :

$$\frac{\pi}{2} = 1 + \frac{1}{2} \cdot \frac{1}{3} + \frac{1.3}{2.4} \cdot \frac{1}{5} + \frac{1.3.5}{2.4.6} \cdot \frac{1}{7} + \dots$$

(b) (i) Show that both the power series

$$\sum_{n=0}^{\infty} a_n x^n$$

and the corresponding series of derivatives

$$\sum_{n=1}^{\infty} na_n x^{n-1}$$

have the same radius of convergence.

(ii) Find the radius of convergence and the exact interval of convergence of the following power series:

$$\sum \frac{n+1}{(n+2)(n+3)} x^n.$$

- (c) Define exponential function E(x), cosine function C(x) and sine function S(x) as sums of power series. Prove that :
 - (i) $E(x) = e^x$ for all real x

(ii)
$$C(x + y) = C(x) C(y) - S(x) S(y)$$
.