This question pap	per contains 4 printed pages]	
	Your Roll No	•••••
9661		
	B.A./B.Sc. (Hons.)/III	В
	MATHEMATICS—Unit 12	
	(Algebra—III)	
Time: 2 Hours	Maximu	um Marks : 38
(Write your Roll No.	on the top immediately on receipt of this	question paper.)
Attem	npt one question from each Section	1.
	Section 1	
I. (a) Let Z _j	$_{p}$ be the ring of integers modulo p .	Show that Z_p
is a fi	ield iff p is a prime number.	.4
(b) Define	e characteristic of an integral don	nain R. Show
that th	he characteristic of R is either zer	o or a prime
numbe	er.	514

(2) 9661

2. (a) If R is a commutative ring and $a \in R$. Then show that:

$$\langle a \rangle = \{ ar + na/r \in \mathbb{R}, n \in \mathbb{Z} \},$$

where $\langle a \rangle$ denotes the smallest ideal of R containing a. 4

- (b) Let R be a non-commutative ring with unity. Prove that Z(R), the centre of R is a subring of R. Is it an ideal?
 Justify.
 3½
- (c) Give an example of a ring R with unity having a subring with unity, which is different from the unity of R. 2

Section II

- 3. (a) Let R be a P.I.D. (Principal Ideal Domain) which is not a field. Show that any proper ideal of R is a maximal ideal iff it is generated by an irreducible element of R.
 - (b) Let C[0, 1] be the ring of all continuous real valued functions defined on [0, 1], under pointwise addition and multiplication. Let:

$$\mathbf{M} = \left\{ f \in \mathbf{C}[0, 1] \middle/ f\left(\frac{2}{3}\right) = 0 \right\}.$$

(3) 9661

- (a) Prove that in a P.I.D. (Principal Ideal Domain) an element
 is prime iff it is irreducible.
 - (b) Let A and B be two ideals of a ring R. Show that:

$$\frac{A+B}{A} \approx \frac{B}{A \cap B}.$$

Section 111

- 5. (a) Prove that every Euclidean Domain is a P.I.D. (Principal Ideal Domain).
 - (b) State and prove Eisenstein's criterion for irreducibility of polynomials.
- 6. (a) Prove that every P.I.D. (Principal Ideal Domain) is a U.F.D.(Unique Factorization Domain).
 - (b) Let R be an integral domain with unity. Prove that every irreducible element of R[x] is also an irreducible polynomial. Give an example to show that the converse is not true.

Section IV

7. (a)	(a)	If K is a finite extension of a field F and L is a fini
	extension of K, then prove that L is a finite extension	
	of F and $[L:F] = [L:K] \times [K:F]$.	

- (b) Find the degree of the splitting field of the polynomial $x^4 + 1$ over the field Q of rational numbers. 4½
- 8. (a) Prove that a regular hexagon is constructible using ruler and compass.
 - (b) Let L be an algebraic extension of a field K and K be an algebraic extension of F. Prove that L is an algebraic extension of F.
 5½