This question paper contains 4+2 printed pages]

Your Roll No.

9662

B.A./B.Sc. (Hons.)/III

В

MATHEMATICS-Unit XIII

(Algebra-IV)

Time: 2 Hours

Maximum Marks: 38

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt two questions from each Section.

Section I

- Define basis of a vector space and write a basis for each of the following vector spaces. Also write the dimension of the vector space.
 - (i) The vector space C² over R;
 - (ii) The vector space of n-tuples over the field C of complex numbers.
 - (iii) The vector space F[x] of all polynomials over a field F

- (iv) The vector space $M_{2\times3}(F)$ of all 2×3 matrices defined over the field F. 4½
- 2. (i) If W_1 and W_2 are two subspaces of a vector space V(F), then show that $W_1 + W_2$ is a subspace of V(F). When do we say that $\hat{W}_1 + \hat{W}_2$ is a direct sum?
 - (ii) Find two subspaces A and B of $\mathbb{R}^4(\mathbb{R})$ such that dim A = 3, dim B = 2 and dim (A \cap B) = 1. 2
- 3. Let V be a finite dimensional vector space over F. Let W be a subspace of V. Show that :

$$\dim \frac{V}{W} = \dim V - \dim W.$$

Let V be the space of 2×2 matrices over F. Let W be the subspace of V spanned by :

$$\mathbf{S} = \left\{ \begin{bmatrix} \mathbf{1} & & \mathbf{0} \\ \mathbf{0} & & \mathbf{0} \end{bmatrix}, \begin{bmatrix} \mathbf{0} & & \mathbf{1} \\ \mathbf{0} & & \mathbf{0} \end{bmatrix} \right\}$$

Find a basis of $\frac{V}{W}$.

Section II

4. Define Rank and Nullity of a linear transformation $T: V \to W, \text{ where } V \text{ and } W \text{ are finite dimensional}$ vector spaces over a field F. Prove that :

$$rank(T) + nullity(T) = dim V.$$
 5

5. Let T be a linear operator on \mathbf{R}^2 defined by $T(x_1, x_2)$ $= (-x_2, x_1).$ Let $\beta = \{\epsilon_1 = (1, 0), \epsilon_2 = (0, 1)\}$ and $\beta' = \{\alpha_1 = (1, 2), \alpha_2 = (1, -1)\}$ be two ordered bases for \mathbf{R}^2 . Find a matrix P such that :

$$[T]_{\beta'} = P^{-1}[T]_{\beta}P.$$
 5

6. Find range, rank, kernel and nullity of the linear transformation defined by $T: \mathbb{R}^3 \to \mathbb{R}^3$ such that T(x, y, z) = (x + z, x + y + 2z, 2x + y + 3z).

Section, III

- 7. A vector space V over F is an inner product space and W is a subspace of V. Define orthogonal complement W^{\perp} of W and prove that $V = W \oplus W^{\perp}$.
- 8. Obtain an orthonormal basis for V, the space of all real polynomials of degree at most 2, the inner product being defined by

$$\langle f, g \rangle = \int_{0}^{1} f(x) g(x) dx$$
 4½

9. (i) Define annihilator A(W) of a subspace W of a vector space V(F) and prove that :

$$A(W_1 + W_2) = A(W_1) \cap A(W_2).$$
 2½

24/2

(ii) If W = L{(1, 2, 3), (0, 4, -1)} is a subspace of $\mathbb{R}^3(\mathbb{R})$. Find A(W) and a basis of A(W). 2

Section IV

Find the eigenvalues, eigenvectors and the eigenspaces of 10. the matrix is an one may not a fact that

$$\mathbf{A} = \begin{bmatrix} 5 & \text{id} & -6 & \text{ion} & -6 \\ -1 & & 4 & & 2 \\ 3 & & -6 & & -4 \end{bmatrix}$$

$$3 & -6 & & -4 \end{bmatrix}$$

Is A diagonalizable? Justify.

5

- 11. (i) Prove that if E is the projection on R along N. then I - E is the projection on N along R. 3
 - Find a projection E which projects R² onto the (ii) subspace spanned by (1, -1) along the subspace spanned by (1, 2). 2

- 12. If $V = W_1 \oplus W_2 \oplus \dots \oplus W_k$, then prove that there exist k linear operators $E_1, k_2, \dots \in E_k$ on V such that :
 - (i) Each E_i is a projection i.e. $E_i^2 = E_i$:
 - (ii) $E_i E_j = 0$ for $i \neq j$;
 - (iii) $1 = E_1 + E_2 + \dots + E_k'$
 - (iv) The range of E_i is W_i for $i = 1, 2, \dots, k$. 5

9662 6 2.000