This	question	paper	contains	4	printed	pages]	
------	----------	-------	----------	---	---------	--------	--

Roll No.	
----------	--

Æ.

S. No. of Ouestion Paper : 624

Unique Paper Code : 235686

35686

Name of the Paper : Linear Algebra and Calculus

Name of the Course : B.A. (Hons.) Mathematics-IV

Semester : VI

Duration: 3 Hours Maximum Marks: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt any two questions from each Section.

Section I

- 1. (a) Determine whether $W = \{(a, b, c) \in \mathbb{R}^3 : a + b + c = 0\} \subseteq \mathbb{R}^3$ is a subspace of \mathbb{R}^3 or not.
 - (b) Show that (3, -4, 6) belongs to subspace of \mathbb{R}^3 spanned by vectors (1, 2, -1), (2, 2, 1) and (1, -2, 3).
 - (c) Let $\mathbb{R}^2 = \{(a, b) : a, b \in \mathbb{R}\}$. Define addition and scalar multiplication as :

$$(a_1, a_2) + (b_1, b_2) = (0, a_2 + b_2)$$

$$\alpha(a_1, a_2) = (\alpha a_1, \alpha a_2), \alpha \in \mathbf{R}.$$

Show that \mathbb{R}^2 is not a vector space over \mathbb{R} .

- 2. (a) Let $f_1 = (1, 0)$, $f_2 = (2, -1)$, $f_3 = (4, 3)$ be three vectors in \mathbb{R}^2 . Let $\{e_1, e_2, e_3\}$ be the standard basis for \mathbb{R}^3 . If $T : \mathbb{R}^3 \to \mathbb{R}^2$ is a linear transformation such that $T(e_1) = (f_1)$, $T(e_2) = (f_2)$ and $T(e_3) = (f_3)$, find T(2, -3, 5).
 - (b) Does the function $T: \mathbb{R}^3 \to \mathbb{R}^2$ defined by

 $T(x, y, z) = (x - y, x^2, 2z) \ \forall \ (x, y, z) \in \mathbb{R}^3$ a linear transformation? Justify your answer.

(2) 624

(c) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear operator, the matrix A of which with resepct to standard

basis is
$$A = \begin{pmatrix} 1 & 2 & -1 \\ 0 & 1 & 1 \\ 1 & 1 & -2 \end{pmatrix}$$
. Verify Rank-Nullity Theorem for T.

- 3. (a) Show that the following is an inner product on \mathbb{R}^2 , $\langle u, v \rangle = \alpha_1 \beta_1 2\alpha_2 \beta_1 2\alpha_1 \beta_2 + 5\alpha_2 \beta_2$, where $u = (\alpha_1, \alpha_2), v = (\beta_1, \beta_2) \in \mathbb{R}^2$.
 - (b) Prove that:

$$\left\{ \left(\frac{1}{3}, \frac{-2}{3}, \frac{-2}{3}\right), \left(\frac{2}{3}, \frac{-1}{3}, \frac{2}{3}\right), \left(\frac{2}{3}, \frac{2}{3}, \frac{-1}{3}\right) \right\}$$

form an orthonormal set in ${\bf R}^3$ w.r.t. standard inner product. Do they constitute a basis of ${\bf R}^3$?

(c) Find a vector of unit length which is orthogonal to the vector (3, -2, 2) of R³ relative to standard inner product.

Section II

4. (a) Use $\varepsilon - \delta$ definition to prove that:

: 6

$$\lim_{x\to 5} 3x = 15.$$

(b) Show that:

$$f(x) = \frac{1 - e^{\frac{1}{x}}}{1 + e^{\frac{1}{x}}}$$

is discontinuous at x = 0.

5. (a) Discuss the derivability of the function:

$$f(x) = \begin{cases} x, & x < 1 \\ 2 - x, & 1 \le x \le 2. \\ -2 + 3x - x^2, & x > 2 \end{cases}$$

at
$$x = 1, 2$$
.

(b) Show that:

$$f(x) = |x - 1| + |x + 1|$$

is not derivable at x = -1 and 1.

- 6. (a) Show that there is no real number k for which the equation $x^3 3x + k = 0$ has two distinct roots in [0, 1].
 - (b) State the intermediate value theorem for a continuous function. Let f be defined as follows:

$$f(x) = \begin{cases} x^2 + 1, & 0 < x \le 1 \\ 0, & x = 0 \end{cases}$$

Show that f is not continuous at 0 and conclusion of intermediate value theorem does not hold.

Section III

7. Let 9½

$$f(x) = \begin{cases} xy \frac{(x^2 - y^2)}{(x^2 + y^2)}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$$

Show that:

$$f_{yx}(0, 0) \neq f_{xy}(0, 0).$$

- 8. Let f(x, y) = |x| + |y| for all $(x, y) \in \mathbb{R}^2$. Show that f is continuous at (0, 0) but is not differentiate at (0, 0).
- 9. (a) Let:

$$f(x, y) = \begin{cases} \frac{xy^2}{x^2 + y^2}, (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$$

Show that f(x, y) has directional derivative in all direction at (0, 0).

(b) For the following function, locate all relative maxima, relative minima and saddle points if any:

$$f(x) = x^3 + y^3 - 3xy. 5\frac{1}{2}$$

4