This que	stion paper co	ntains 4+1 printed p	pages]				
			Roll No.				
S. No. of	Question Pape	er : 8153					
Unique Paper Code Name of the Paper		: 235254 : Mathematical Awareness			D		
Name of	the Course	: B.A. (Hons.)	Í.				
Semester		: II		•			
Duration	: 3 Hours				Maximum	Marks: 75	
		No. on the top in All questints. Each part carries	ons are compuls				
(a)	Answer in s	hort:				·	
	(i) What of	distinction was Ram	anujan awarded	on graduating	g from schoo	1?	
•	(ii) What	was Newton's achie	evement in 1703	?			
•	(iii) What	was the topic of No	oether's dissertat	ion?	•		
	(iv) Name	the mathematici	an who wrote	the mathe	matical ser	ies named	
	, 'Eleme	ents'.					
-				•		P.T.O.	

(b) Answer briefly:

- (i) Why was Emmy Noether not allowed to teach in Germany until 1900 but was allowed in France since 1861?
- (ii) What did Riemann introduce in the only single paper he published on Number Theory?
- (iii) Name the mathematician with whom Newton was involved in a dispute over the invention of Calculus.
- (iv) Name one work of Euclid on Mathematical astronomy.
- (c) State whether the following statements are True or False. If false, then give the correct answer:
 - (i) Euclid is regarded as the pioneer in the invention of calculus.
 - (ii) Ramanujan passed away at the ripe old age of 82.
 - (iii) Riemann investigated the mechanism of the human ear.
 - (iv) Newton's father died three months before Newton was born.

(d) Answer briefly:

(i) Euclid's work was his own, culminating in the construction of five regular solids.

What are these solids known as ?

- (ii) Name the first two Cambridge Professors who returned Ramanujan's work.
- (iii) All his life "he" found it difficult to relate to other people. Who is "he" in the above line:?
- (iv) Who invited Noether to join them at Gottingen?
- 2. Attempt any three parts. Each part carries eight marks.
 - (a) (i) State Vinogradov's Theorem and give examples in support of the theorem.
 - (ii) State properties of perfect numbers with examples.
 - (b) (i) State Prime testing method given by Fermat. Is the converse true?
 - (ii) Find the value of x if:

$$1! + 2! + 3! + 4! + \dots + 100! \equiv x \pmod{5}$$
.

- (c) (i) Define unit fractions and express $\frac{98}{100}$ and $\frac{25}{13}$ as unit fractions.
 - (ii) Show that the sequence of the ratio of one Fibonacci number to one preceding it converges to the golden ratio.
- (d) (i) Explain Durer's magic square.
 - (ii) Define continued fraction and express $\frac{156}{46}$ as continued fraction.

P.T.O.

· 4

- 3. Do any three parts. Each part carries eight marks.
 - (a) (i) Define Euler path and Hamiltonian path and give an example of a Euler path which is not a Hamiltonian path.
 - (ii) Sketch the graph of the function $f(x) = x^2$ for $x \ge 0$. What are its domain and range?
 - (b) (i) Explain how a Snowflake curve is formed?
 - (ii) What are the sets of symmetries of an isosceles triangle?
 - (c) (i) If $\sin x = (-7)/25$, find the values of the other trigonometric functions. 4
 - (ii) Explain the difference between Euclidean and non-Euclidean Geometry. 4
 - (d) (i) Define genus of a surface and give genus of a mobius Strip.
 - (ii) Find the angles in the following figure:

- 4. Do any three. Each part carries five marks.
 - (a) Find two numbers whose arithmetic mean is 10 and geometric mean is 8.
 - (b) A bag contains 6 white and 4 black balls and a second bag contains 4 white and 8 black balls. One of the bags is chosen at random and a draw of 2 balls is made. Find the probability that one is white and other black.
 - (c) (i) Why range is a crude measure of dispersion?
 - (ii) How are standard deviation and variance the same and how are they different?
 - (d) Define Optimal solution of a Linear Programming Problem. Solve the following Linear Programming Problem:

Maximize:
$$Z = x_1 - x_2$$

Subject to:
$$3x_1 + 2x_2 \le 6$$

$$x_1 - x_2 \le 2$$

$$x_1, x_2 \ge 0$$
.