This question paper contains 4+1 printed pages]

Roll No.			g!			,	
Iton 110.	1 1	ł				 i	L

S. No. of Question Paper: 8132

Unique Paper Code

: 235603

D

Name of the Paper

: Algebra - V

Name of the Course

: B.Sc. (H) Mathematics

Semester

: **VI**

Duration: 3 Hours

Maximum Marks: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt any two parts from each question.

All questions are compulsory.

- 1. (a) How many subgroups of order 4 does $Z_4 \oplus Z_2$ have ? Justify.
 - (b) Prove that if a group G is the internal direct product of a finite number of subgroups H_1 , H_2 ,, H_n , then G is isomorphic to the external direct product of H_1 , H_2 ,, H_n .
 - (c) The set {1, 9, 16, 22, 29, 53, 74, 79, 81} is a group under multiplication modulo 91.

 Determine the isomorphism class of this group. Also, express G as an internal direct product of cyclic groups.

 [6.5,6.5,6.5]

P.T.O.

(2)

- 2. (a) Let G be a group, let H be a subgroup of G and let G act by left multiplication on the set A of left cosets of H in G. Let φ be the associated permutation representation afforded by this action. Then show that :
 - (i) G acts transitively on A
 - (ii) the stabilizer in G of $eH \in A$ is the subgroup H
 - (iii) the kernel of φ is the largest normal subgroup of G contained in H \ni ker $\varphi = \bigcap_{x \in G} xHx^{-1}$.
 - (b) (i) If G is a group of order p^n for some prime number p and $n \ge 1$, then show that G has a non-trivial centre.
 - (ii) Prove that the kernel of an action of the group G on the set A is the same as the kernel of the corresponding permutation representation $G \to S_A$.
 - (c) Define a simple group. Show that A_5 is the only non-trivial proper normal subgroup of S_5 . [7,7,7]
- 3. (a) Let |G| = pq, where p, q are distinct primes, p < q, $p \dagger (q 1)$. Show that G is cyclic.

- (b) (i) Suppose that G is a finite simple group and contains subgroups H and K such that |G:H| and |G:K| are prime. Show that |H| = |K|.
 - (ii) Prove that a group of order 210 cannot be simple.
- (c) Let |G| = 30. Show that both Sylow 3-subgroup and Sylow 5-subgroup are normal in G. [7,7,7]
- 4. (a) Find an orthogonal matrix whose first row is:

$$\left(\frac{1}{3},\frac{2}{3},\frac{2}{3}\right).$$

- (b) Let T be a normal operator on an inner product space V over the field F. Then the following statements are equivalent:
 - (i) $||Tx|| = ||T^*x|| \quad \forall \ x \in V$
 - (ii) T cI is normal $\forall c \in F$
 - (iii) If x is an eigen vector of T, then x is also an eigen vector of T^* .
 - (iv) If λ_1 and λ_2 are distinct eigen values of T with corresponding eigen vectors x_1 and x_2 , then x_1 and x_2 are orthogonal.
- (c) Let T be a linear operator on the finite dimensional complex inner product space V.

 Then V has an orthonormal basis of eigen vectors of T with corresponding eigen values of absolute value 1 if and only if T is unitary.

 [6,6,6]

P.T.O.

(4)

5. (a) Find new coordinates x', y' so that the quadratic form :

$$2x^2 + 2xy + 2y^2 = 36$$

can be written as:

$$\lambda_1(x')^2 + \lambda_2(y')^2 = 36.$$

(b) Let T be a linear operator on R³ which is represented in the standard ordered basis by the matrix:

$$\begin{bmatrix} 3 & 1 & -1 \\ 2 & 2 & -1 \\ 2 & 2 & 0 \end{bmatrix}.$$

Show that \exists a diagonalizable operator D on R^3 and a nilpotent operator N on R^3 such that T = D + N and DN = ND. Find the matrices of D and N in the standard basis.

- (c) If T is a linear operator on a finite dimensional vector space V, then prove that T has a cyclic vector if and only if there is some ordered basis for V in which T is represented by the companion matrix of the minimal polynomial for T. [5,5,5]
- 6. (a) Prove that if T^2 has a cyclic vector, then T has a cyclic vector. Is the converse true? Justify.

(b) Let T be a linear operator on \mathbb{R}^3 which is represented in the standard ordered basis by the matrix:

$$A = \begin{bmatrix} 5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4 \end{bmatrix}$$

Find its Rational form and hence find an invertible 3×3 real matrix P such that $P^{-1}AP$ is in rational form.

(c) How many possible Jordan forms are there for a 3×3 complex matrix A given by:

$$\mathbf{A} = \begin{bmatrix} 4 & 0 & 0 \\ a & 4 & 0 \\ a & b & -2 \end{bmatrix}$$

Under what condition A is similar to a diagonal matrix.

[6,6,6]