This question paper contains 7 printed pages]

Roll No.						
	1	,				ı .

S. No. of Question Paper: 8131

Unique Paper Code

: 235601

D

Name of the Paper

: Analysis-V (6.1)

Name of the Course

: B.Sc. (Hons.) Mathematics

Semester

: **VI**

Duration: 3 Hours

Maximum Marks: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

All questions are compulsory.

Attempt any two parts from each question.

- 1. (a) Define region and show that the region S is polygonally connected.
 - (b) (i) Let Arg(w) denotes the values of the argument between $-\pi$ and π (inclusive).

Show that:

$$Arg\left(\frac{z-1}{z+1}\right) = \pi/2 \quad \text{if} \quad Imz > 0$$
$$= -\pi/2 \quad \text{if} \quad Imz < 0$$

- (ii) Show that the function $f(z) = \overline{z}$, where \overline{z} is the complex conjugate of z, is nowhere differentiable.
- (c) (i) Show that there is no power series:

$$f(z) = \sum_{0}^{\infty} a_n z^n$$

such that:

$$f(z) = 1$$
 for $z = 1/2$, $1/3$, $1/4$, and $f'(0) > 0$.

- (ii) If f is analytic in a region and if |f| is constant there, then show that f is constant.

 6,4+2,3+3
- 2. (a) (i) Suppose $T \subset \mathbb{C}$ show that the corresponding set S on the Riemann Sphere Σ :
 - (1) is a circle if T is a circle.
 - (2) a circle minus (0, 0, 1) if T is a line.
 - (ii) Show that the function $f(z) = |z|^2$ is differential only at z = 0 and f'(0) = 0.

- (b) (i) Find all the solutions of $e^z = 1$.
 - (ii) Show that the functions:

$$f(z) = f(x+iy) = xy(x+iy)/(x^2+y^2)$$
 if $x+iy \neq 0$
= 0 if $x+iy = 0$

satisfies the Cauchy-Riemann Equations at z = 0 but not differentiable there.

- (c) (i) Suppose that g is the inverse of f at z_0 and that g is continuous there. If f is differentiable at $g(z_0)$ and if $f'(g(z_0)) \neq 0$, then g is differentiable at z_0 and $g'(z_0) = 1/f'(g(z_0))$.
 - (ii) Find the radius of convergence of the series:

$$\sum_{n=0}^{\infty} \left(\frac{n! z^n}{n^2} \right).$$
 4+2,2+4,4+2

3. (a) (i) Let C be a smooth curve given by z(t), $a \le t \le b$, and suppose f is continuous at all the points z(t). Then prove that:

$$\int_{C} f(z) dz = -\int_{C} f(z) dz,$$

where - C is the opposite curve of the curve C given by :

$$-\mathbf{C}: w(t) = z(a+b-t).$$

(ii) Evaluate:

(1)
$$\int_{C_1} (z-z^2) dz$$
, where $c_1 : z(t) = (1-t) + it$; $0 \le t \le 1$

(2)
$$\int_{C_2} \frac{1}{(z-2)} dz$$
, where $c_2 : z(t) = 2 + e^{it}$; $0 \le t \le \pi$.

(b) (i) Show that :

$$\int_{\mathcal{C}} z^k \ dz = 0$$

for any integer $k \neq -1$ and $C: z(t) = Re^{it}$; $0 \leq t \leq 2\pi$

- (1) By showing that z^k is the derivative of a function analytic throughout C.
- (2) Directly using the parameterization of C.
- (ii) Find the power series expansion of $f(z) = z^2$ around z = 2.
- (c) (i) State and prove the Liouville's Theorem.
 - (ii) Suppose f entire and $|f'(z)| \le |z|$, $\forall z$.

Show that:

$$f(z) = a + bz^2$$
 with $|b| \le \frac{1}{2}$. $2+4,4+2,4+2$

4. (a) Suppose that C is a (smooth) curve of length L and f is continuous on C and:

$$|f(z)| \leq M \ \forall z \in \mathbb{C}.$$

Then prove that:

$$\left|\int_{\mathcal{C}} f(z)dz\right| \leq ML.$$

(b) Show that if f is continuous real valued function and $|f(z)| \le 1$, then show that :

$$\left|\int_{|z|=1} f(z)dz\right| \leq 4.$$

(c) If f is entire and

$$g(z) = \begin{cases} \frac{f(z) - f(a)}{z - a} & z \neq a \\ f'(a) & z = a \end{cases}$$

then prove that:

$$\int_{\Gamma} g(z) dz = 0,$$

where Γ is the boundary of a rectangle R.

6,6,6

5. (a) If f is analytic in $D(\alpha; r)$, then show that there exist constants c_k such that:

$$f(z) = \sum_{k=1}^{\infty} c_k (z-\alpha)^k, \ \forall z \in D(\alpha; r).$$

(b) Find the Laurent Expansions for:

(i)
$$\frac{1}{z^2(z-1)} \text{ about } z=1$$

(ii)
$$\frac{1}{z^4 + z^2} \text{ about } z = 0$$

(iii)
$$\frac{1}{z^2-4} \text{ about } z=2.$$

(c) Prove that the bilinear transformation f(z) = 1/z maps a circle to a circle or a line.

7.5,2.5×3,7.5

6. (a) (i) Find the fundamental period of:

$$\cos\left(\frac{2\pi nx}{k}\right)$$
 and $\sin(nx)$.

(ii) Are the following functions f(x) which are assumed to be periodic, of period 2π , even, odd or neither even nor odd?

(1)
$$f(x) = \cos^2(x)$$
 if $-\pi < x < 0$,
= $\sin^2(x)$ if $0 < x < \pi$.

(2)
$$f(x) = x$$
 if $0 < x < \pi$,
= $\pi - x$ if $\pi < x < 2\pi$.

(7) 8131

(b) Find the Fourier series of:

$$f(x) = |x|$$
 on [-2, 2] and $f(x+4) = f(x) \forall x$.

(c) Find the Fourier cosine series as well as the Fourier sine series of the function f(x) given by:

$$f(x) = x^2, \quad 0 < x < L.$$

Deduce $1 + 1/2^2 + 1/3^2 + \dots = \pi^2/6$. $2+2\times2,6,6$