. This question paper contains 4 printed pages]

Roll	No.						
KOH	110.						

S. No. of Question Paper: 8149

Unique Paper Code

: 235686

D

Name of the Paper

: Mathematics IV (Linear Algebra and Calculus)

Name of the Course

: B.A. (Hons.) - III-(For Economics Hons.)

Semester

: **VI**

Duration: 3 Hours

Maximum Marks: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt six questions in all, selecting two questions from each Section.

Section I

1. (a) Let $V = \mathbb{R}^2$, for (a_1, a_2) , $(b_1, b_2) \in \mathbb{R}^2$, define addition and scalar multiplication on \mathbb{R}^2 as under:

$$(a_1, a_2) + (b_1, b_2) = (0, a_2 + b_2)$$

$$\alpha(a_1, a_2) = (\alpha a_1, \alpha a_2) \ \forall \ \alpha \in \mathbf{R}$$

Show that R² is not a vector space over R under the above defined operations. 6

(b) If $v_1 = (1, 2, 1)$, $v_2 = (3, 1, 5)$, $v_3 = (3, -4, 7)$ are vectors in \mathbb{R}^3 , prove that :

Span
$$\{v_1, v_2\}$$
 = Span $\{v_1, v_2, v_3\}$.

(c) Find a basis and dimension of the subspace:

$$W = \{(a, b, c) : 2a + b - c = 0\} \text{ of } \mathbb{R}^3.$$

P.T.O.

2. (a) Does the function $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by:

$$T(x, y, z) = (x - y, x^2, 2z)$$

a linear transformation? Justify your answer.

4

(b) Find a linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ such that:

$$T(2, -1) = (1, 1), T(-1, 1) = (2, 3).$$

Find T(9, 2) as well.

6

(c) $T: \mathbb{R}^3 \to \mathbb{R}^3$ is a linear operator, the matrix A of which with respect to standard basis is:

$$A = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 \\ -1 & 3 & 4 \end{pmatrix}.$$

Find a basis for the null space of T and its nullity.

6

3. (a) Let $u = (\alpha_1, \alpha_2)$, $v = (\beta_1 \beta_2) \in \mathbb{R}^2$, define

$$\langle u, v \rangle = \alpha_1 \beta_1 + 3\alpha_2 \beta_2$$

Does it define an inner product on R²? Explain.

6

(b) State Cauchy-Schwarz inequality. Verify the same for the vectors:

$$U = (1, -2, 0, 2), V = (-3, 6, 0, 6).$$

Does the equality occur? If so, why?

6

(c) If A is unitary, prove that A^{-1} is unitary.

4

Section II

4. (a) Use $\in -\delta$ definition to show that :

$$\lim_{x \to 0} x \sin \frac{1}{x}$$

exist and equals 0.

6

(b) Determine the points of discontinuity of:

$$f(x) = x[x], \quad \forall x \in \mathbf{R}.$$

5. (a) Let:

$$f(x) = |x| + |x - 1|, \quad \forall x \in \mathbf{R}.$$

Show that f is derivable at all points, except x = 0, 1.

6

(b) Discuss the differentiability of the function:

$$f(x) = \begin{cases} x & x < 1 \\ 2 - x & 1 \le x \le 2 \\ -2 + 3x - x^2 & x > 2 \end{cases}$$

at x = 1, 2.

6. (a) State Rolle's Theorem and verify the same for the function:

$$f(x) = x^3 - 6x^2 + 11x - 6$$
, in [1, 3].

(b) Verify Lagrange's Mean Value Theorem for the function:

$$f(x) = x(x-1) (x-2), \text{ in } \left[0, \frac{1}{2}\right].$$

P.T.O.

4) .

8149

Section III

7. Let f be defined as:

$$f(x, y) = \begin{cases} \frac{x^2 - y^2}{x^2 + y^2} & (x, y) \neq (0, 0) \\ 0 & (x, y) = (0, 0) \end{cases}$$

(a) Show that both:

$$\lim_{x \to 0} \lim_{y \to 0} f(x, y) \text{ and } \lim_{y \to 0} \lim_{x \to 0} f(x, y)$$

exist, but are unequal.

(b) Is f(x, y) continuous at origin? Justify.

91/2

8. Let:

8149

:,

$$f(x, y) = \begin{cases} \frac{xy(x^2 - y^2)}{x^2 + y^2} & (x, y) \neq (0, 0) \\ 0 & (x, y) = (0, 0) \end{cases}$$

Prove or disprove $f_{xy}(0, 0) = f_{yx}(0, 0)$.

91/2

- 9. (a) Use Taylor's Theorem to expand $x^4 + x^2y^2 y^4$ about the point (1, 1) upto the terms of second degree. $5\frac{1}{2}$
 - (b) Find all critical points of the function:

$$f(x, y) = (x - 1)^2 - y^2$$

Also classify them as maxima/minima/saddle point(s).

1

2,800