[This question paper contains 4 printed pages.]

Your Roll No.

5546

B.A. Prog. / I Sem.

В

(L)

MATHEMATICS: Paper A

Calculus

(Admissions of 2011 and onwards)

Time: 3 Hours

Maximum Marks: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt any two parts from each question.

SECTION I

 (a) (i) Find a value for the constant k, if possible, that makes the function f continuous everywhere, where f is defined by

$$f(x) = \begin{cases} 7x - 2, & x \le 1 \\ kx^2, & x > 1 \end{cases}$$
 (6)

- (ii) Show that $\lim_{x\to 0} x \sin \frac{1}{x} = 0$.
- (b) Show that the function f defined by

$$f(x) = \begin{cases} x \left(\frac{e^{\frac{1}{x}} - e^{-\frac{1}{x}}}{e^{\frac{1}{x}} + e^{-\frac{1}{x}}} \right), & x \neq 0 \\ 0, & x = 0 \end{cases}$$
is not derivable at $x = 0$. (6)

(c) Prove that every differentiable function is continuous. Is the converse true? Justify your answer.

(6)

2. (a) If
$$y = \frac{x^2}{(x+2)(2x+3)}$$
, find y_n . (6½)

(b) If
$$\cos^{-1}\left(\frac{y}{b}\right) = \log\left(\frac{x}{n}\right)^n$$
, prove that
 $x^2y_{n+2} + (2n+1)x y_{n+1} + 2x^2y_n = 0$ (6½)

(c) If
$$U = x^2 \tan^{-1} \frac{y}{x} - y^2 \tan^{-1} \frac{x}{y}$$
, $x \ne 0$, $y \ne 0$, prove that

$$\frac{\partial^2 U}{\partial x \partial y} = \frac{x^2 - y^2}{x^2 + y^2}$$
 (6½)

SECTION II.

3. (a) If $p = x \cos \alpha + y \sin \alpha$ touches the curve

$$\frac{x^{m}}{a^{m}} + \frac{y^{m}}{b^{m}} = 1, \text{ prove that}$$

$$p^{\frac{m}{m-1}} = \left(a\cos\alpha\right)^{\frac{m}{m-1}} + \left(b\sin\alpha\right)^{\frac{m}{m-1}}.$$
(6)

(b) If p_1 , p_2 be the radii of curvature at the extremities of any chord of the cardioide $r = a(1 + \cos\theta)$ which passes through the pole, then prove that

$$\rho_1^2 + \rho_2^2 = \frac{16a^2}{q}.$$
 (6)

- (c) Find the angle of intersection of the parabolas $y^2 = 4ax$ and $x^2 = 4by$, at their point of intersection other than the origin. (6)
- 4. (a) Find the asymptotes of the curve

$$x^3 + 2x^2y + xy^2 - 2y^3 + xy - y^2 - 1 = 0$$
 (6½)

- (b) Find the position and nature of the double points on the curve $y^2 = (x-a)^2(x-b)$. (6½)
- (c) Trace the curve $y^2(x^2-1) = .2x-1$. (6½)

SECTION III

- 5. (a) State and prove Lagrange's Mean Value Theorem and give its geometrical interpretation. (6½)
 - (b) Find Maclaurin's power series expansion of the function $f(x) = \sin x$. (6½)
 - (c) Show that

$$1 - \frac{x^2}{2} \le \cos x \le 1 - \frac{x^2}{2} + \frac{x^4}{24} \ \forall x \in \mathbb{R}$$
 (61/2)

P.T.O.

6. (a) Determine the values of a and b for which

$$\lim_{x\to 0} \frac{x(1+a\cos x)-b\sin x}{x^3}$$

exists and equals 1.

(6)

(b) Show that x^x is a minimum for $x = e^{-1}$. (6)

(c) Separate the intervals in which the polynomial

$$2x^3 - 15x^2 + 36x + 1$$

is increasing or decreasing. (6)