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Attempt any two parts from each question.

PART - A (ALGEBRA)
SECTION-I

1. (a) Prove that set of vectors:
{(2,2,-3), (0,-4, 1), (3,1,-4)} in R? is linearly
dependent. " (6.5)
P.T.O.
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(b) Reduce the matrix :

1 3 6 -1
1 45 1
N5 4 3

to its normal form and hence find its rank. (6.5)

(c) Determine the characteristics roots and the
corresponding characteristics vectors of the matrix :

320

o5 1
(6.5)

00 2

SECTION-II
2. (a) Find the sum of series :
c0sB + x cos 20 + x? cos 38 ...oennnn up to n
terms (6.5)
M) If z=cos0 + isinB, show that:

" -1

Zzn_l_]=1t£n‘1119 (6.5)

(c) If @, B, v are the roots of the equation :
x*-3xt+6x-2 = 0
" from the equation whose roots are

BT+ yL v2 + a?, o + B2 (6.5)
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PART -B (CALCULUS)
SECTION-III

(a) Prove that if a function f is derivable at a point,
it is continuous at that point. Show by an example
that the converse is not true. (6)

(b) If y = emes”'x, Show that :

(1-x3y,.,, - @n+ Dxy,,, - (¥ -mP)y_ =0
(6)

(c) State and prove Euler’s theorem on homogeneous
function. If

2 2
u=log|> ty , use this theorem to show that
x+y
du Gu
X“—‘“+ it =1 . .
ox Y ox ©)

SECTION-1IV

(a) Prove that the equation of the normal to the

asteroid :
x4 Y22 = g2

may be written in the form
Xcos@ — ysing + acos 29 (6)

(b} Find the asymptotes of the curve:
Ry —xy? -y =22+ 2yt x+y+1=0 (6)
P.T.O.
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(c) Find the position and nature of the double point on

the curve:
x3-y?-7x2+4y+15x-13=0 (6)

SECTION-V

5. (a) State and Prove Lagrange’s Mean value Theorem.

(6)
(b) Find the maximum and minimum value of the
function :
f(x)=x+l,x=0 (6)
X
(¢) Evaluate
(D) lim_o(sinx)’
i) Bim,_,—o2X 6)
xsinx
SECTION-VI

6. (a) Evaluate:

dx
o 69
(b) Find the volume of a sphere of radius a using
integration. (6.5)

(¢) Find the surface area of the solid of revolution,
obtained by revolving the ellipse :

about X-axis. (6.5)
(500)



